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Resumo

Nesta tese, os espacos de Musielak—Orlicz sao aplicados a Geometria da Informa-
¢ao, em que p-familias de distribuigoes de probabilidade sao construidas. Usando
notagao e terminologia uniformes, reunimos os resultados principais dos espacos de
Musielak—Orlicz. Embora esses espacos tenham sido estudados extensivamente, al-
gumas questoes ainda nao foram respondidas completamente. No6s nos focamos na
extensao de alguns resultados e técnicas para fungoes de Musielak—Orlicz arbitréarias
(nao necessariamente finitas). Em algumas dessas extensoes, usamos formulas mais
gerais para a componente continua em ordem e a componente singular de funci-
onais lineares limitados. Também encontramos condi¢oes necessarias e suficientes
para a suavidade da norma de Orlicz, para fungoes de Musielak—Orlicz arbitrarias.
Numa @-familia, subconjuntos de espagos de Musielak—Orlicz sao usados como con-
juntos de coordenadas. As p-familias sao obtidas a partir de uma generalizagao das
familias exponenciais. A funcao exponencial encontrada nas familias exponenciais
é substituida por uma ¢-fungao. Numa p-familia, o andlogo da funcao geradora
de cumulantes é uma fungao de normalizagao. Definimos a @-divergéncia como a
divergéncia de Bregman associada a funcao de normalizacao, fornecendo uma gene-

ralizacao da divergéncia de Kullback—Leibler.



Abstract

In this thesis, Musielak—Orlicz spaces are applied to Information Geometry,
where ¢-families of probability distributions are constructed. Using unified nota-
tion and terminology, we collected some standard results of Musielak—Orlicz spaces.
Although these spaces have been studied extensively, some questions were not an-
swered completely. We have focused on the extension of some results and techniques
to arbitrary (not necessarily finite) Musielak—Orlicz functions. In some extensions,
we made use of more general formulas for the order continuous and singular com-
ponents of bounded linear functionals. We found necessary and sufficient condi-
tions for the smoothness of the Orlicz norm for arbitrary Musielak-Orlicz functions.
In a @-family, subsets of Musielak—Orlicz spaces are used as coordinate sets. We
obtained p-families by a generalization of exponential families. The exponential
function found in exponential families is replaced by a ¢-function. In a ¢-family,
the analogous of the cumulant-generating functional is a normalizing function. We
defined the y-divergence as the Bregman divergence associated to the normalizing

function, providing a generalization of the Kullback-Leibler divergence.
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1 Introduction

Motivated by the construction of ¢-families of probabilities distributions, we col-
lected the standard results of Musielak—Orlicz spaces. There was a need of hav-
ing a reference with unified notation and terminology. For a deeper progress with
these families, it is essential a knowledge on Musielak—Orlicz spaces. For example,
in a subsequent line of investigation, some properties of the yp-divergence, like its
smoothness or uniform convexity, depends on their counterparts in the underlying
Musielak—Orlicz space. We also filled some gaps in the theory of Musielak—Orlicz
spaces. The gaps were mainly related to the extension of some results or techniques
to arbitrary (not necessarily finite) Musielak—Orlicz functions.

The theory of Musielak—Orlicz spaces begins in 1931 with a paper of W. Orlicz
[46], where variable LP spaces on the real line are defined. In a paper [47] of 1932,
W. Orlicz introduces the spaces that now bear his name, the so-called Orlicz spaces,
with an additional condition (the Aj-condition). Later in a work [48] of 1936,
W. Orlicz presents the Orlicz spaces in full generality (without the As-condition).
Orlicz spaces are a generalization of the classical L? spaces. The function |-|P defining
the classical LP spaces is replaced by an Orlicz function ®(-) in the Orlicz spaces.
Let (T,%, i) be a measure space. Given an Orlicz function, the Orlicz space L? is

defined as the set of all measurable functions w: 17" — R for which
Is(Au) = / O (| Au|)dp < oo, for some A > 0. (1.1)
T

In the subsequent years to the seminal work of W. Orlicz, the theory of Orlicz spaces
was developed, culminating in the book of M. A. Krasnosel’skil and Ja. B. Rutickit
[37], the first systematic work treating Orlicz spaces. In this book, Orlicz spaces
are restricted to N-functions and Lebesgue measures on compact subsets of R”,
although much of the work could be extended directly to non-atomic, finite mea-
sures. The general theory without these restrictions and some geometrical properties
were investigated by several authors [40, 30} 22, 26]. The general setting for Orlicz
functions and non-atomic measures (when necessary) can be found in the books of
M. M. Rao and Z. D. Ren [54, [55].

Musielak—Orlicz functions are an extension of Orlicz spaces. Replacing the Orlicz
function ®(-) in by a Musielak-Orlicz function ®(¢, ), depending on a parame-
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ter t € T', we get a Musielak—Orlicz space. This extension was presented initially by
H. Nakano in 1950 [44], and developed by J. Musielak and W. Orlicz in 1959 [43],
in the context of modular spaces. J. Musielak in 1983 collected standard results on
Musielak—Orlicz spaces in his book [42]. Since the 1980’s, many advances have been
conceived by numerous researchers, with emphasis by the Polish mathematicians
H. Hudzik [24], 25], 27, 23] and A. Kaminska [29, 32, 33]. Recently, efforts have been
directed to the investigation of variable LP spaces [30, [15], [14], in particular to the
maximal operator and other operators |13} [10].

The nonparametric (or infinite-dimensional) exponential statistical manifold was
at first constructed by G. Pistone and C. Sempi in 1995 [53]. They showed how P,,,
the set of all probability measures equivalent to u, can be endowed with a structure
of C'*°-Banach manifold. Each connected component of the exponential statistical
manifold constitutes an exponential families of probability distributions. The coor-
dinate sets used in the construction are subsets B, of Orlicz spaces L*!(p), where &,
is an exponentially growing Orlicz function, and p is a probability density in P,. In
subsequent works [52], 0], further properties of the exponential manifold were investi-
gated. Information Geometry [41], 3] [19] consists in providing families of probability
distributions with differential geometrical structures. In a finite-dimensional expo-
nential family, one can define on it a Riemannian metric simply as a Hessian of the
cumulant-generating functional. In the nonparametric case, the exponential family
cannot be equipped with a Riemannian metric. P. Gibilisco and G. Pistone in [I§]
provide how the exponential connection can be defined on exponential statistical
manifolds. A. Cena in [§] investigates further this connection, and M. R. Grasselli
in [20, 21] deals with the notion of dual connections. In recent years, some attempts
have been made in the construction of families of probability distributions where
the exponential function is replaced by another function. In [5I] the nonparametric
k-exponential family is constructed, and in [2, 4] the geometry of finite-dimensional
g-exponential families is investigated. In this thesis we endow P, with a structure

of C"*°-Banach manifold, using a ¢-function in the place of the exponential function.

1.1 Summary of contributions

The contributions are distributed throughout the thesis. We present them concisely
in this section. In Chapter [2| we show how the two inequalities used as criteria for
embeddings between Musielak—Orlicz spaces are related. With this result, the for-
mula involving Simonenko indices is extended to Musielak—Orlicz functions. Some
standard results in the theory of Musielak—Orlicz spaces are just known for finite-
valued Musielak-Orlicz functions. In Section [3.4 we provide some extensions to

arbitrary Musielak—Orlicz functions. The characterization of a singular linear func-
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tional as a non-trivial continuous linear functional vanishing in the Morse—Transue
space cannot be used when the Musielak—Orlicz function is not finite-valued. Ex-
ploiting the fact that Musielak—Orlicz spaces are Banach lattices [1], we found more
general formulas for the order continuous and singular components of bounded linear
functionals, which can be employed in the determination of their norms for arbitrary
Musielak—Orlicz functions. In Chapter [5, we extend for Musielak—Orlicz functions
some results found in [37, §13.3], which presents how a collection of functions with
equi-absolutely continuous norms is related to an Orlicz function increasing essen-
tially more rapidly than another. H. Hudzik and Z. Zbaszyniak in [27] gives neces-
sary and sufficient criteria for the smoothness of the Orlicz norm for finite-valued
Musielak—Orlicz functions. Using our previous extensions, we generalize these crite-
ria for arbitrary Musielak—Orlicz functions. Arguing as in [29], where the type and
cotype of Musielak—Orlicz spaces are characterized, we give in Chapter [7| some cri-
teria for the upper and lower estimates between Musielak—Orlicz spaces. In Chapter
B, Musielak—Orlicz spaces are applied in the construction of ¢-families of proba-
bility distributions. The exponential function in an exponential family is replaced
by a ¢-function in a (p-family. The analogue of the Kullback-Leibler divergence
is the -divergence. As Kullback—Leibler divergences, ¢-divergences are Bregman

divergences.

1.2 Structure of the thesis

The organization of the thesis is as follows. In Chapter [2, we begin by present-
ing the Musielak-Orlicz functions and some inequalities relating them. Chapter
deals with standard results of Musielak—Orlicz (function) spaces. In this chapter,
the Luxemburg, Orlicz and Amemiya norms are introduced. We show that the
Musielak—Orlicz space is complete with respect to any of these norm, which are
equivalent. Some inequalities presented in Chapter 2| are used in Section as con-
ditions for the embedding between Musielak—Orlicz spaces. In Section we study
some properties of Morse-Transue spaces. Chapter [4] aims to provide an account of
the dual of Musielak—Orlicz spaces from the point of view of Banach lattices [I]. We
can find more general formulas for the order continuous and singular components of
continuous linear functionals. Chapter |5| deals with the compactness of subsets of
Morse—Transue spaces. In Chapter [6] one can find necessary and sufficient criteria
for the strict convexity and smoothness of the Luxemburg and Orlicz norms, and
for the uniform convexity of the Orlicz norm. Chapter [7] provides criteria for upper
and lower estimates between Musielak—Orlicz spaces. In Chapter [8] the ¢-family of
probability distributions is constructed. In this chapter, ¢-divergences are obtained

as the Bregman divergence of normalizing functions, which replace the cumulant-
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generating functional. Finally, some conclusions and future directions of research

are presented in Chapter [0



2  Musielak—Orlicz functions

2.1 Definitions
Let (T,%, 1) be a measure space. We say ®: T x [0,00] — [0, 00] is a ¢-function
when, for p-a.e. t €T,

(i) ®(t,-) is non-decreasing and continuous, except possibly at a b € (0, co) where
limp @(t, u) = ®(t,0) < oo, and P(t,u) = oo for all u > b,

(ii) ®(¢,0) =0 and ®(¢, 00) = o0,
(iii) @(-,u) is measurable for all u > 0.

Item (ii) and the continuity of ®(t,-) guarantee that ®(¢,-) is not equal to 0 or oo

on the interval (0, 00). In addition to the definition of ®-functions, if
(iv) ®(t,-) is convex, for u-a.e. t € T,

then @ is called a Musielak—Orlicz function. If a Musielak—Orlicz function ®

satisfies, for p-a.e. t € T,
(v) ®(t,u) < oo for u € (0, 00),
Dt

—0aswul0,and

O(t,u
(vii) M—)OO&SU—)OO,
u

we say that ® is an N-function. A Musielak—Orlicz function ® is said to be an
Orlicz function if the functions ®(¢,-) are identical for u-a.e. t € T. We do not
use a different notation for ®-functions or N-functions for which ®(, -) are the same
for p-a.e. t € T. In the rest of the text, if not specified, it will be assumed that a
property regarding the functions ®(t,-) holds for p-a.e. t € T. For example, when
we mention that ® or ®(¢, -) is finite-valued, we are saying that ®(t, -) is finite-valued
for p-ae. t €T.

The complementary function ®*: 7' x [0,00] — [0, 00] to a Musielak—Orlicz

function ® is defined as

O*(t,v) = sup(uv — ®(t,u)), forallv >0, (2.1)
u>0
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Figure 2.1: Pair of complementary Musielak—Orlicz functions.

i.e., ®*(t,-) is the Fenchel conjugate of ®(¢,-). The complementary function ®*
satisfies (i)—(iv) in the definition of Musielak-Orlicz functions. A proper function
equals its biconjugate (the Fenchel conjugate of the Fenchel conjugate) if and only
if it is convex and lower semi-continuous (see [56, Theorem 12.2]). Thus, in virtue of
the left-continuity of ®(,-), the Fenchel conjugate of ®*(¢, ) results in ®(¢,-). The
following equality holds:

O (t,u) = sup(uv — ®*(¢,v)), for all u > 0. (2.2)

v>0

Denote by @’ (t,-) and @/, (¢,-) the left- and right-derivatives of the Musielak—

Orlicz function ®(t,-), whose left- and right-continuous inverses are
(@) _(t,v) =inf{fu>0:P" (t,u) > v}, forallv>0,

and
(@), (t,v) =sup{u>0: P (t,u) <wv}, forallv>0,

respectively. We also denote 0®(t,u) = [®’_(¢,u), P, (¢,u)]. The functions ¢ and *

are expressed as

O(t,u) = /Ou P (t,x)dx and O*(t,v) = /Ov(é*);(t,y)dy, (2.3)

for all w,v > 0. In virtue of the equalities in (2.1 or (2.2)), the functions ® and ®*
satisfy the Young’s inequality

w < O(t,u) + O*(¢t,v), for all u,v > 0. (2.4)

The Young’s inequality reduces to an equality when v € 0®(¢,u) if u is given, or
when u € 99*(t,v) if v is given. (See Figure 2.1])
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Define, for all t € T,

ag(t) = sup{u > 0: ®(¢t,u) = 0}, (2.5)
bo(t) = sup{u > 0: O(t,u) < oo}, (2.6)
and
o CI)(t’ u) T / T /
o
do(t) = tim 2 i & (1) = lim @, (¢, u). (2.8)
U—00 u U—00 U—00

In virtue of 2.3 we have
ag+(t) = co(t) and be«(t) = do(t).

Clearly, a Musielak—Orlicz function ® is an N-function if, and only if, ce(t) = 0
and dg(t) = oco. Thus the complementary function to any N-function is also an

N-function.

Example 2.1 (Variable exponent function). For a measurable function p: T —
[1, 00], called the variable exponent function, the function ®(¢,u) = u?®, where

for p(t) = co we use the convention

0, f0<uc<l,

oo, if 1< u,

defines a Musielak—Orlicz function. Denote p, = essinf p(t) > 1 and p* = esssup p(t) <
co. With the assumption 1 < p, < p* < oo, we have that ®(¢,u) = u?®) is an

N-function. For given p: T — [1, 0], we define its conjugate function as

p(t)/(p(t) - 1)’ for p(t) € (1’ OO):
P'(t) = 1 o0, for p(t) =1
1, for p(t)

Y

0.

Then the complementary function to ®(¢,u) = |u[P® is given as

p(1) sl p(O) 7O, for p(t) € (1, 00),
Q*(t,u) = < u™, for p(t) =1,

u, for p(t) = oc.

The variable exponent function is used in the definition of the variable LP space
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(see Example , which generalizes the classical LP space.

Example 2.2. Let ¢: R — (0, 00) be a strictly increasing, continuous function such
that ¢(x) — 0 as ¢ — —o0, and ¢(z) — 00 as & — oo. For a measurable function
c: T — R, we define the ®-function ®(¢,u) = p(c(t) + u) — p(c(t)). Clearly ® is a
Musielak—Orlicz function if ¢ is convex. Denoting by ¢* the Fenchel conjugate of ¢,

the complementary function ®* can be expressed as ®*(t,v) = ¢*(v)—c(t)v+p(c(t)).

2.2 Comparisons between Musielak—Orlicz functions

Let ® and ¥ be Musielak-Orlicz functions. We denote by L® the set of all real-
valued, measurable functions w for which [, ®(¢, [u(t)|)du < oo. For constants
a, A > 0, a non-negative function f € LY and an integrable function h: T' — [0, 00),

we will consider the inequalities
al(t,u) < O(t, \u), for all u > f(¢), (2.9)

and
aV(t,u) < O(t, A\u) + h(t), forall u> 0. (2.10)

These inequalities are somewhat equivalent. If (2.9) is satisfied, then (2.10) fol-
lows with h(t) = aWU(t, f(t)). The converse implication is not satisfied in general.

However, the following result can be verified.

Proposition 2.3. Let & and ¥ be Musielak—Orlicz functions. Suppose that, for

constants o, \ > 0, there exists an integrable function h: T — [0,00) such that
a¥(t,u) < O(t, Au) + h(t), for all u > 0.

Then, for constants o € (0,«) and N = X\, or &/ = a and X' > X\, a non-negative
function f € LY can be found such that

Ut u) <O, Nu), for allu > f(t).

Proof. Let W~l(t,-) denote the left-continuous inverse of W(t,-). We recall that
U—L(¢,.) satisfies the inequalities W (¢, U~ (t,v)) < v and U(t, U~ (t,v) +¢&) > v,
for all v > 0, and arbitrary ¢ > 0. For o/ € (0,a) and X' = A\, take f(t) =
U~ (t, 5 h(t)). Clearly, f € LY. From (o —o/)U(t, f(t)+€) > h(t), for any € > 0,

T a—a!

we have

Ut u) < Ot u) + h(t) — (. — o )V(t,u) < P(t, M), for all u > f(t).
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Now, for o = o and X' > A, we can find, by the arguments above, a non-negative
function f € LY such that

’\T'(%a)\lf(t,u) < %’(I)(t, Au) < ®(t, Nu), for all u > f(t),

and the proof is finished. n

By the left-continuity of ® and VU, inequality (2.9) may not be satisfied for
w = f(t). This case is illustrated by the following example. For some integrable
function w: T'— [0, 00), take the functions ¥ (¢, u) = w(t)u, for all u > 0, and

0, fo<u<l,
O(t,u) =
oo, ifl<u.

Thus inequality (2.9) follows with & = A = 1 and f = 1. However, for 0 < u <
f(t) =1, we have U(t,u) > O(t,u).
The functions f and h in (2.9) and (2.10]) can be replaced by the functions

Jax(t) =sup{u > 0:a¥(t,u) > O(t, A\u)} (2.11)
and
hoa(t) = sg%(alll(t, u) — O(t, \u)), (2.12)

respectively, where supf) = 0. A function similar to f,\ was studied in [58], in
the context of inclusions between Musielak—Orlicz spaces. One can easily show that
these functions are measurable. We verify the measurably of f,  in the lemma

bellow, since this result will be used later.

Lemma 2.4. Let ® and ¥ be Musielak—Orlicz functions. For constants a, A >
0, the non-negative function f,x(t) = sup{u > 0 : a¥(t,u) > ®(¢t, A \u)} is the
limit of a non-decreasing sequence of non-negative simple functions {f,} such that
a¥(t, fu(t)) > O(t, Afu(t)), for p-a.e. t € T. Consequently, the function f, . is

measurable.

Proof. For every rational number r > 0, define the measurable sets A, = {t € T :
aV(t,r) > ®(t,Ar)} and the simple functions u, = rya,, where x4 denotes the
characteristic function of a subset A C T. For r = 0, set u, = 0. By the left-
continuity of ®(¢,-) and V(¢t,-), we have f,a(t) = supu,(t), for p-a.e. t € T. Let

{7} be a rearrangement of the non-negative rational numbers with r; = 0. Clearly,
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the non-negative simple functions f,(f) = maxj<g<y u,, () satisfy the properties

stated in the lemma. O

We write ¥ < ® or & = U if there exist constants o, A > 0, and a non-negative
function f € L® for which the inequality is satisfied. Moreover, ¥ ~ ¢ denotes
that the relations ¥ < ® and ¥ > & hold.

We will show that “=<" is transitive. Assume that the Musielak—Orlicz functions
U, & and T satisfy the relations ¥ < ® and & < Y. Then there exist constants
a, A1 > 0 and as, Ay > 0, and non-negative functions f; € LY and fo € L%, for
which

agU(t,u) < O(t, \ju), for all u > fi(t),

and
ag®(t,u) < Y(t, Agu), for all u > fo(t).

From these inequalities, it follows that
araaV(t,u) < ae®(t, \ju) < T(t, MAqu), for all u > f5(¢),

where f3(t) = max(fi(¢), /\% f2(t)), which belongs to LY. Therefore, the relation
¥ < T holds. Consequently, “=<” is transitive, i.e., if ¥ < & and & < T are
satisfied, then ¥ < T follows.

By the lemma below, we have that ¥ < & if and only if ®* < U*,

Lemma 2.5. Let ®* and U* denote the complementary functions to the Musielak—
Orlicz functions ® and WV, respectively. Suppose that, for constants a, X > 0, there

exists a non-negative function f € LY such that
a¥(t,u) < O(t,  u), for allu > f(t).

Then, for constants o = X and X' > 2, or o/ € (0,%) and X' = 2, a non-negative
(0% (07 (0% (0%

function g € L® can be found such that
'O (t,v) < UH(t, Nv),  for allv > g(t).
Proof. An integrable function h: T'— [0, 00) can be found such that
a¥(t,u) < O(t, \u) + ah(t), for all u > 0.
Calculating the Fenchel conjugate of the functions in the inequality above, we obtain

Lo (¢, v) < W*(t,20) + h(t), forall v>0.
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From Proposition the proof is finished. O

Definition 2.6. Let & and ¥ be Musielak—Orlicz functions. If for each € > 0 there

exists a non-negative function f. € LY such that
U(t,u) < O(t,eu), forall u> f.(t),

then ® is said to increase essentially more rapidly than ¥, which is denoted by
>V (or U« D).

Let ®* and U* denote the complementary functions of ® and ¥, respectively. In
virtue of Lemma [2.5] we have that ® > W if, and only if, U* > &*.

2.3 The As- and Vsy-conditions

Definition 2.7. Let ® be a Musielak—Orlicz function. If there exist a constant

a > 0, and a non-negative function f € L? such that
a®(t,u) < (¢, su), for all u > f(t), (2.13)

then @ is said to satisfy the As-condition, or to belong to the Ay-class (denoted
as ® € Ay). If we can found a constant v > 0, and a non-negative function f € L®
such that

YP(t,u) < B(t, 1yu), forall u > f(t), (2.14)

then we say that ® satisfies the V,-condition, or belong to the V,-class (written
as ® € V).

Remark 2.8. (i) Since $®(¢,u) > ®(¢, su) for all u > 0, we have the constant
in the definition of the As-condition satisfies 0 < o < %

(ii) If @ satisfies the Ay-condition, then ®(¢,-) is finite-valued. Assuming bg () <
00, we have co = a®(t,u) > ®(t, su) for be(t) < u < 2be(t), which implies
that ® cannot satisfy the As-condition.

(iii) If 3y < 1, then y® (¢, u) > 1y®(t,u) > D(¢, 3yu) for all u > 0. Consequently,
the constant v in the definition of the Vs-condition satisfies v > 2.

(iv) We note also that, if ® satisfies the Vo-condition, then w — 00 as u — 0.
Rewriting (2.14) as
(t,u) _ 10(t, 37u)

<

1
— , forall u > f(t),
" 5 %WU or all u > f(t)
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we conclude that do(t) < 3da(t). Consequently, do(t) = oo.

Lemma 2.9. The Ag-condition is equivalent to the statement that, for every \ €
(0,1), there ezist a constant ax € (0,1), and a non-negative function fy € L® such
that

a)®(t,u) < O(t, \u), for all u > fi(t). (2.15)

The Vy-condition is equivalent to the statement that, for any A € (0,1), there exist

a constant vy > 1, and a non-negative function f, € L® such that
NP (t,u) < O(t, Mypu), for all u > fi(t). (2.16)

Proof. Suppose that holds. If the natural number n > 1 is such that 27" < ),
then a"®(t,u) < ®(¢,27"u) < ®(t, Au), for all u > 2" f(t). Conversely, if @
satisfies and the natural number n > 1 is chosen such that A" < %, then
AP (t,u) < B(t, A"u) < B(t, Lu), for all u> A" f(t).

Assume that is satisfied. If the natural number n > 1 is such that 27" < A,
then 7" ®(t,u) < &(t,27"y"u) < O(t, \y"u), for all uw > f(t). Conversely, if
holds and the natural number n > 1 is chosen such that \" < %, then Y ®(¢, u) <

®(t, \"yju) < B(t, 395u), for all u > f(¢). O
Now we can obtain how these conditions are related.

Theorem 2.10. A Musielak—Orlicz function ® satisfies the Vy-condition if, and

only if, its complementary function ®* satisfies the Ag-condition.

The following result extends Theorems 4.1 and 4.3 in [37].
Proposition 2.11. The function ® satisfies the Ay-condition if, and only if, there
exist a constant q € [1,00) and a non-negative function f € L® such that

ud’, (t,u) < q®(t,u), for allu> f(t). (2.17)

The function ® satisfies the Vo-condition if, and only if, there exist a constant

p € (1,00] and a non-negative function f € L® such that
ud” (t,u) > p®(t,u), for allu> f(t). (2.18)
Proof. The cases ¢ = 1 and p = oo are trivial. For 1 < ¢,p < oo it follows from the

result bellow. O

Lemma 2.12. Ezpressions (2.17) and (2.18]) for 1 < p,q < oo are equivalent to the
formulas

O(t, Au) < NO(t,u), for all A >1 and u > f(t), (2.19)
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and
O(t, \u) > N®(t,u), forall\>1 andu > f(t), (2.20)

respectively.

Proof. We just show the equivalence for (2.17)), since the proof for (2.18)) is analo-
gous. From (2.17), we can write for any A > 1 and u > f(t)

(t, u) Q! (t,x) Au g
"o u) / (1, 7) f"—q/u g4 =),

and then (2.19) follows. Conversely, (2.19)) implies for all A > 1 and u > f(¢)

MCP’(t )d = ! (D(t, \u) — O(t ))<X1_1
A= AT A e

ud’, (t,u) O(t,u).

<
“A=1/,
Letting A | 1 in the above expression, we obtain ([2.17)). O

Definition 2.13. Let ® be a Musielak—Orlicz function. If there exist a constant

o > 0, and a non-negative function f € L® such that
O(t, Au) < aX®P(t,u), forall A >1and u> f(t),

then & is said to satisfy the A?condition, or to belong to the A%-class (denoted
as ® € A9). If we can found a constant a > 0, and a non-negative function f € L®
such that

O(t, \u) > aXPO(t,u), forall A >1and u> f(t),

then we say that ® satisfies the VP-condition, or belong to the V?-class (written
as & € VP).

2.4 Some indices concerning Musielak—Orlicz functions

For a given Musielak—Orlicz function @, we define g¢ as the infimum of all ¢ € [1, 00)

for which a non-negative function f € L® can be found such that
ud’, (t,u) < q®(t,u), forall u> f(t)

(if ¢ does not exist, we set g = 00); and we define pp as the supremum of all

p € (1, 00] for which we can find a non-negative function f € L?® such that

ud’ (t,u) > pP(t,u), forall u> f(t)
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(if p cannot be found, we put ps = 1). The indices gp and ps generalize the

Simonenko indices [57] for Orlicz functions:

w1 oud(u) - ud’ (u)
e :hggg.}f @Zu) , s zhinj)lip OB

Proposition 2.14. Let ®* denote the complementary function to the Musielak—
Orlicz function ®. Then

PeNAy s g <o and P € Ny & pgp > 1.

Moreover,
1 1

—+— =1 (2.21)
do  Po+
Proof. The first assertion follows from Propositions [2.10] and 2.11] If ® does not

satisfy the As-condition, then ¢ = co and pe« = 1, and the equality in ([2.21])

follows. Assume that ® satisfies the As-condition. If g = 1 we obtain pg = o0,
and hence (2.21]) follows. Thus we can assume 1 < gp < 00 and 1 < pg« < co. For

any ¢ > 0, there exists a non-negative function f € L® such that
ud’, (t,u) < (go +)P(t,u), forall u> f(t). (2.22)

In virtue of Remark[2.8-(ii), we have that ®(¢, -) is finite-valued. Thus the inequality
in (2.22)) is satisfied for u > f(t). Let g be a measurable function such that g(t) =
P’ (t, f(t)). The function g satisfies

(L, 9(t)) < f(O) (L, f(1) < (g0 + ) (L, [(1)),

and hence g € L®. For any v > 0, denote u = (®*)’ (t,v). In virtue of of the
monotonicity of y — ®*(¢,y)/y, and ¢, (t,u) = ¥, (¢, (P*)" _(t,v)) > v, we can write

v(P*) (t,v) u ud’ (t,u) ud’ (t,u)

(o) B (L))o LY (L) | wd () — (L)

If v > g(t), then for some n > 0 such that v > g(¢)+n, we have that u = (®*)"_(¢,v) >
(®*)"(t,g(t) +n) > f(t). Since —*5 decreases as x increases, it follows that

v(P*)_(t,v) ud’, (t,u)/P(t,u)
O*(t,v)  — ud (t,u)/P(t,u) —1
> qp +¢
T qote—1

> 1, forallv> g(t).

. . . qo 1 1
By the arbitrariness of €, we obtain pe: > i OF oo o <1
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Now, for any pe — 1 > & > 0, a non-negative function ¢ € L®" can be found
such that
v(®*) (t,v) > (qg- — &)®*(t,v), for all v > g(t).

Consequently, we can write
(o= — &)®*(t,v) < v(P*) _(t,v) + h(t), forall v >0,

where h(t) = (qo — €)P*(t, g(t)). Using the equality case in the Young’s inequality,

we can write

(go- — ) (u®’ (t,u) — D(t, u)) = (qo- — €)D" (¢, P, (t,u))
< @ (¢, u)(D)L (8, D (¢, u)) + h(t)
< ud’ (t,u) +h(t), forallu >0,
and hence

go —c— 1

ud’, (t,u) < O(t,u) +

h(t), for allu > 0.
o — € Gox — €

Proceeding as in the proof of Proposition 2.3 we can find, for small > 0, a measur-
able function f: T — [0, 00) satisfying [, ®(t, f(t))dp < [, fF(O)P/ (¢, f(t))dp < oo
and such that

gor —— 1

ud’ (t,u §<
L (t,u) p—

- 17) 71(I>(t,u), for all u > f(¢).

Since ¢, > 0 are arbitrary, and

<CI<1>*—€—1_ >—1> qor —€ o Qo
Jox — € T qer—e—17 qer— 1’

3 ga* 1 1
we obtain pg < o and hence e T 2 1. O



3  Musielak—Orlicz function spaces

3.1 Introduction

Let L° denote the space of all real-valued measurable functions on 7', with equality

p-a.e. For a ®-function or a Musielak—Orlicz function ®, the functional

In() = / (¢, |u())dp, for any u € L, (3.1)
T
gives rise to the Musielak—Orlicz (function) class
L® ={ue L Iy(u) < oo}

The Musielak—Orlicz (function) space L® and the Morse—Transue (function)
space E?® are defined as the smallest subspace of L° that contains L%, and the largest

subspace of L° that is contained in L®, respectively, i.e.,
L® = {uc L°: I3(\u) < oo for some A > 0}

and
E* ={uec L°: Is(\u) < oo for all A > 0}.

If ® is a ®-function, the Musielak-Orlicz space L*® can be equipped with the norm
lule = inf{/\ >0: ]@(%) < /\}, for u € L®. (3.2)
Assuming that ® is a Musielak—Orlicz function, the Luxemburg norm is given as
llul|lo = inf{/\ >0: Lp(%) < 1}, for u € L®. (3.3)

Proceeding as in [42], Theorem 1.5] and [37, p. 79|, one can verify that the expressions
in (3.2) and (3.3)) define norms in L?.

Example 3.1 (Variable L? spaces). Let p: T — [1,00] be a variable exponent
function (see Example . The so-called variable L? space, or LP\) space, is
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defined as the Musielak—Orlicz space associated to the functional

Iyy(u) = /T]u(t)]p(t)du, for all u € L°.

The variable LP spaces generalize the classical L? spaces; when p(t) = pg is constant,
there holds LP() = LPo. More detailed results of variable L? spaces can be found in
[36., [15] 14].

Example 3.2 (Luxemburg norm of characteristic functions). Assume that ®(t,u) :=
®(u) < oo for every t € T. Let A C T be a measurable set with finite measure
0 < u(A) < oo. Since Is(P1(1/u(A))xa) = 1, we get

B 1
||XA||<1> = m

Lemma 3.3. The closed unit ball in L* endowed with the Luzemburg norm coincides
with the set {u € L* : Is(u) < 1}. Moreover, for every u € L®, there hold

Ip(u) < |julle whenever ||ulle < 1,
and

Is(u) > ||ulle whenever ||ul|e > 1.

Proof. Suppose ||u|l¢ < 1. Then, by the convexity of ®,

——Ig(u) < Iy (L) <1,

[l lulle

which implies Ip(u) < ||u||¢. On the other hand, if ||ul|s > 1 and € > 0 is sufficiently

small such that ||ulls — e > 1, we have

1
lulle — €

Iy(u) > LD(L) > 1,

[ulle — &
and, consequently, Ip(u) > ||ul|e. O

In order to show the completeness of L® with respect to the Luxemburg norm,

we will use the following result.

Lemma 3.4. A sequence of functions {u,} C L* converges in Luzemburg norm to
u € L® if and only if Is(M(u — u,)) — 0 as n — oo, for every A > 0. Moreover,
the condition that the sequence {u,} C L® is Cauchy with respect to the Luzemburg
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norm is equivalent to the condition that Io (A (uy, —uy,)) — 0 as m,n — oo, for every

A > 0.

Proof. We will just show the first part of the lemma, since the proof of the other
part is analogous. Without loss of of generality, we can assume u = 0. Take any
A > 0. If Ig(Au,) — 0, then there exists ng > 1 such that Ip(Au,) < 1 for every
n > ng. Hence [luylle < 5 for all n > ng. Since A > 0 is arbitrary, we have that
|unlle — 0. Conversely, assume that ||u,||ls — 0. Then ||[Au,|l¢ — O for any A > 0.
For arbitrary 0 < € < 1, there exists an ng such that | Au,|le < ¢ for all n > ny. In
virtue of Lemma(3.3] it follows that Is(Au,) < |[Au,||e < € for alln > ng. Therefore,
Is(Auy,) — 0. O

Theorem 3.5. The Musielak—Orlicz space L® is complete with respect to the Lux-

emburg norm.

Proof. Let {u,} be a sequence in L® such that S = Y ;= [Ju;lle < oco. Denote
wy, = Yo |ug] and w = Y00 |ug]. Since |lwplle < D05 lJuille = Sn, we can write
Ip(w,/S) < Is(w,/S,) < 1. By the Monotone Convergence Theorem, it follows
that Ip(w/S) < 1. Hence w € L* and > |u;(t)| converges for p-a.e. t € T. Then
we can define u = > %, u;. Since |u| < w, we have u € L*. Now fix any A > 0.
Denote R, = 3 . |luill¢. For arbitrary 0 < ¢ < 1, we can find ny > 1 such that

R, < e/ for every n > ny. Hence we can write, for any n > ny,

B(\(r=2ow)) < na (o 3o w) <

n .
1= 1=n-+

Thus, Io(AMu — >, u;)) — 0. Since A > 0 is arbitrary, it follows that |u —

S uille — 0. Therefore, L® is complete with respect to the Luxemburg norm. [

Lemma 3.6 (|31], [35, Lemma 2|). Assume that the measure u is o-finite, and
let ® be a Musielak—Orlicz function. Then there is a sequence of non-decreasing,
measurable sets {1} satisfying p(T;) < oo and p(T \ U, Ti) = 0 such that

(a) if ©(t,u) >0, for all uw > 0, then

essinfer O(¢,u) > 0,

for every u > 0, and every i > 1;
(b) if ®(t,u) < 00, for all u > 0, then

esssup;cp. ®(t,u) < oo,

for every u > 0, and every i > 1;
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(c) if 0 < ®(t,u) < oo, for all u > 0, then
essinf;eq, ®(t,u) >0 and esssup,eq, P(t,u) < oo,

for every u > 0, and every i > 1.

Proof. The proofs of (a) and (b) are analogous to their respective parts in the proof
of (¢), which is presented below.

Let {A;} be a sequence of pairwise disjoint, measurable sets such that u(A;) < oo
and pu(T\ U2, Ai) = 0. Define

AL, ={t€A:o(t,1)> L and ®(t,n) < m}.

1
Obviously, (A \ Up_y AL,,) = 0and Al C AL ., for every m > 1. Hence
(A \ AL,,) = 0 as m — oo, for each [,n > 1. Fix any ¢ > 0. For every n > 1,
we can find a m, > 1 such that p(A4;\ Al ) < &. Denoting BL = (7, Al we

n,mk, n,mk,’

have pu(A;\ BL) < 307 (A \ AL ) < e. Hence

l
essinfyep ®(t,2) > —1- >0 and  esssupyep P(t,n) < ml, < oo,

!
my

for every I,n > 1. Construct sets Bg- = Béj as above, with ¢; = 277, for j > 1,
and define T; = |Ji_, Ué‘:l B!, for each i > 1. Obviously, {T;} is a non-decreasing
sequence of sets. From u(A;\ U2, BY) < (A \ B) <277, for any j > 1, we obtain
u(A\ U2, B)) = 0 for every I > 1. Consequently, u(T\ U2, Th) = 272 pu(Ar \
Ui, B!) = 0. For every u > 0, and a natural number n chosen such that 1 < u

and u < n, we have
essinfier, (¢, u) > min{essinf,p (¢, 1):1<1<i,1<5j<i}>0
and
esssup,er, P(t,u) < max{esssupteB; O(t,n):1<1<i,1<j<i} < oo,

for each 7 > 1. O

Assume that the Musielak—Orlicz function ® is finite. Let {7},} be the sequence
of measurable sets in Lemmal[3.6] For any u € L®, define for each n > 1 the function

Up = UX{Ju|<n}T) - (3.4)

Clearly, the functions wu,, are in E® and satisfy the convergence |u—u,| = |u|—|u,| |

0. Now suppose that u belongs to E®. According to Fatou’s Lemma, for every A > 0,



CHAPTER 3. MUSIELAK-ORLICZ FUNCTION SPACES 20

we have that Ip(A(u —u,)) — 0 as n — oo. Therefore, the sequence {u,} converges

to u in Luxemburg norm.

Lemma 3.7. Let ® be a finite-valued Musielak—Orlicz function. For any function u
in L?, there exists a sequence {u,} C E® such that |u — u,| = |u| — |u,| } 0. Each
function u, can be chosen belonging to L™ and vanishing outside a set of measure
zero. In addition, if the function u belongs to E®, then {u,} converges to u in

Luzemburg norm.

3.2 The Orlicz norm

The Orlicz norm of any u € L?® is given as

me—w4

It follows that the expression in (3.5 defines a norm in L*. The verification that

||-||,0 is positive homogeneous and satisfies the triangle inequality is trivial. Clearly,

/uvdu’ cv e L¥ and I (v) < 1}. (3.5)
T

for u = 0 we have ||u|¢,0 = 0. On the other hand, if ||u|l¢ o = 0 then we get u = 0,
since we can always make uv > 0 in the integral in (3.5). The Musielak—Orlicz space
equipped with the Orlicz norm will be denoted by L.

Example 3.8 (Orlicz norm of characteristic functions). Suppose that ®(t,u) =
®(u) < oo for every t € T'. For a measurable set A C T satisfying 0 < p(A) < oo,

we will show that
Ixalleo = (®*)7(1/u(A))u(A).
If v e L* is such that I« (v) < 1, then by Jensen’s inequality,

A Salvlde [y (lvhdp 1
() < S

and, consequently,

Ixalleo = sup{’/TXAvdu‘ cve L and I4-(v) < 1}
< (@) 7TH(1/(A))(A).

On the other hand, if vy = (®*)7'(1/u(A))xa, then Io-(vg) = 1 and [, xavodp =
(@*) ' (1/p(A))u(A). Therefore, [[xalloo = (2)7'(1/u(A))u(A).

Theorem 3.9 (Holder’s Inequality). For every u € L® and v € L®", there hold

'/uvdu‘g|\u\|¢70|yv\|@, and ’/uvdu‘§|!u!\q>\!v\lq>*,o-
T T
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Proof. These inequalities follow from the fact that I¢,( 4 ) < 1and _[q;*( v ) <1

l[ulle l[vll o

for any u € L® and v € L*". O

Lemma 3.10. Let ® be a finite-valued Musielak—Orlicz function. The Orlicz and

Luzemburg norms can be written respectively as

|lulloo = sup{ /uvd,u‘ cv € LY and ||v]
T

= sup{

o <1

o < 1} (3.6)
|

/uvd,u‘ cv € EY and |jv|
T

and

a0 <1

lulla = sup{ (35)

|
_ Sup{ o < 1}. (3.9)

Proof. The equality in (3.6) follows from Lemma . We shall show that (3.8

holds. Without loss of generality, we assume that u is non-negative and ||ul/e = 1.

/uvd,u‘ cv € LY and ||v]
T

/uvd,u‘ cv € EY and |||
T

By Hoélder’s Inequality, the expression in (3.8)) is less than or equal to 1. We will
prove that this expression is greater than or equal to 1. In virtue of Lemma [3.3]
for any € > 0, we have Io((1 +¢)u) > ||(1 + €)ulle = 1 + e. According to Lemma
, there exists a sequence of non-negative functions {u,} in E® such that u, 1 u.

Define the functions

(1, (1+ ), (1)

_  forallm > 1.
L+ Io (O, (, (L + S)un(t))) 0=

vn (1)

From the inequalities
2u
Q*(t, ' (t,u)) < O(t,u) + ©*(¢, P (t,u)) = ud’ (t,u) < / P’ (t, x)dr < O(t,2u),

we obtain that ®' (¢, (1 + ¢)u,(t)) € E®". Consequently, the functions v, belong to
E®". TFor a sufficiently large ng, there holds Is((1 + €)u,) > 1, for every n > ny.

Then, for n > ng, we can write

1
wo,dp| > —— 1+ ¢8)u,v,d
/T u‘_IH/T( ) 1

1 Io((1+ €)up) 4 To- (P (L, (1 + €)un(t)))
14¢ L4 Lo (P (¢, (14 €)un(t)))

1
1+¢e

>
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By the Young’s inequality, the functions v, satisfy ||v,|

/ dp| > 1
su UV, .

Since € > 0 is arbitrary, we have that sup{| [, uvdp| : v € L*" and [jv]|g+o < 1} > 1.
Therefore, the expression in the right-hand side of equals ||ulle = 1.

Now we will show that the expressions in the right-hand side of and
are equal to the expressions in the right-hand side of and , respectively.
Let |||}y and ||-|]|2 denote ||-||o,0 and |||

o0 < 1, and hence

/uvdp’ cv € LY and ||v]lg- < 1} > sup
T

n>1

o+, Or ||-||le and ||-]|o 0, respectively. Clearly,

ulls = sup{

/uvd,u’ cv € L? and ||v]; < 1}
T

> sup{

We shall show that the above expression is satisfied with the inequality in the op-

/uvd,u’ cv € B and ||v]; < 1}. (3.10)
T

posite direction. For arbitrary & > 0, a function vy € L?" satisfying |lvg|ls < 1 can
be found such that | [, uvodu| > ||ull; — 5. In virtue of Lemma , a sequence of
functions {v,} in E*" can be found such that |vg — v,| = |vo| — |va] J O almost
everywhere. Clearly, ||v,||2 < ||voll2 < 1. By the Dominated Convergence Theorem,

for a sufficiently large n > 1, we have

/ Wndu‘ > ‘ / uvodu' “E s -
T T 2

Consequently,

sup{

Since € > 0 is arbitrary, the inequality sign in (3.10)) can be replaced by an equality

sign. Therefore, (3.7) and (3.9) are satisfied. O
Lemma 3.11. Let ® be a finite-valued Musielak—Orlicz function. If u is a function
in L® such that ||ulley < a < 1, then the function v(t) = sgnu(t) - ¥, (¢, |u(t)|)
satisfies Ip«(v) < a < 1.

/uvd,u‘ cv € E* and ||v]|; < 1} > [lul[y —e.
T

Proof. Without loss of generality, we assume u > 0. We will consider Ig(u) > 0,
since Ig(u) = 0 implies v = 0. Let {7},} be the sequence of measurable sets provided
by Lemma . Define the functions u, = uX{u<n}nz,, and set v,(t) = @' (¢, u,(t)).

Clearly, v, T v. In virtue of the inequalities

2u
Q*(t, ' (t,u)) < O(t,u) + ©*(¢, P (t,u)) = ud’ (t,u) < / P’ (¢, x)dr < O(t,2u),
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we have that Ip«(v,) < co. Suppose that a < Ig«(v). A sufficiently large n > 1 can
be found such that Is(u,) > 0 and o < Ig+(v,,). By the equality case in the Young’s
inequality, it follows that

I (vy) < Ip(up) + I (vy) = / U Uy dpt.
T

We cannot have o < Ip+(v,) < 1, since we would obtain a < Ig«(v,,) < fT UpUpdp <

|unlleo < a. Suppose that 1 < Ig«(v,,). In virtue of Ip- (Iq)levn)) < Iq,*l(vn)Iq)*(Un) =

1, we have fT UnVndpt < ||Un o0 - Lo+ (vy,). Consequently,

I (vy) < / UnUndpt < [ty ||@0 - Lox(vn),
T

which provides the contradiction 1 < ||un|leo < ||ul|eo. Therefore, we have that

Ip«(v) < . O

Lemma 3.12. Let @ be a finite-valued Musielak—Orlicz function. If u is a function
in L® such that ||ulleo < 1, then u is in L%, and Is(u) < ||ulleo. Consequently, for
every u € L®, there holds ]Q(m) <1.

Proof. Define v(t) = sgnu(t) - ® (¢, |u(t)]). According to Lemma [3.11} we have

I« (v) < 1. By the equality case in the Young’s inequality, it follows that

Ip(u) < Ip(u) + Ip-(v) = / wodp < ||ul|e .o,
T

and the proof is finished. n

Theorem 3.13. Let ® be a finite-valued Musielak—Orlicz function. Then
ulle < llulleo < 2||ulle, for allu e L*.

Proof. The first inequality follows from Lemma m For every v € L® such that
Ip«(v) < 1, we have

u

/ Lvdu < [¢,<—> + Ip(v) < 2.
r [[ulle lulle

Therefore, ||ulleo < 2||ullo. O

Lemma 3.14. Ifu: T — R is a measurable function such that

/ uvd,u‘ < o0, foreachve L*,
T
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sup{

Proof. Without loss of generality, we can assume u,v > 0. If the implication fails,

then

/uvd,u’ cv € L* and Ip(v) < 1} < 00. (3.11)
T

then a sequence of non-negative functions {v,} satisfying /¢ (v,) < 1 can be found
such that
/ uvpdp > 2", for alln > 1.
T

Set Wy, = > 0 v,/2" and w = Y 7 v,/2". By the convexity of ®*(¢,-), we have

n=1

I« (w) < 1. Thus the series defining w converges p-a.e. In addition,

/ vwdp = lim [ vw,dp >n, foralln > 1,
T

n—0o0 T
which contradicts the hypothesis over wu. O

Theorem 3.15. Assume that the Musielak—Orlicz function ® is finite-valued. If

u: T — R is a measurable function such that

/ uvd,u‘ < 00, foreachwv € LY,
T

then u € L®.

Proof. From Lemma [3.14] we have that (3.11]) is satisfied. Notice that the proofs of
Lemma and Lemma can be repeated without the assumption that u € L?,
replacing ||ul|s, by the supremum in (3.11). Thus Is(——) <landu e L?. O

llulle,o0

3.3 The Amemiya norm

The Musielak-Orlicz space L? can be equipped with the Amemiya norm
oL ®
|ulle.a = inf (1 + Is(ku)), for u e L®. (3.12)
’ k>0 k

The proof that the expression in (3.12)) defines a norm in L* can be found in [42,
Theorem 1.10]. The Amemiya norm is a special case of the p-Amemiya norm for

p = 1. For more details on p-Amemiya norms we refer to [11].

Theorem 3.16. Let ® be a finite-valued Musielak—Orlicz function. The Orlicz and

Amemiya norms coincide, i.e., for any u € LT, we have

1
ulle,0 = ;}gg E<1 + Ip(ku)).
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Proof. Let u be an arbitrary function in L®. By the Young’s inequality, we can

G

(1+ Ip(ku)),

write for any k > 0

lulle0 =

1 = *

z su kuvdu’ cv € L? and I (v) < 1}
T

1

k

and, consequently,
1
< inf — = .
il < inf (1 + Ta(k)) = Julls,a

We have to verify the inequality above in the opposite direction.
Initially we show that the proof can be restricted to the case ®(, -) is continuously

differentiable. For any ¢ > 0, define the Musielak-Orlicz function

1 (I+€)u q)(t l‘)
O(tu) = ——— %) g
(t,) In(1+¢) /u z

Clearly, ®.(t,-) has continuous derivative, and satisfies the inequalities
O(t,u) < P (t,u) < Ot (1+e)u).

It follows that the spaces L® and L®: coincide as sets, and the Amemiya and Orlicz

norms are related as

[ulle,a < lulle.a < (1+e)fulle,a

and
[ulls,o < llulle.0 < (1 +&)|ulleo-

Supposing ||uls. 0 = ||u]|e..4 for every u € L?=, from these inequalities, we have

1

= = llulle.a

I+e
< lulle.a < flulle..a = llulle.o < (1 +&)[ulleo-

Ll Jul
1+ <I>0_1+ o0

Since ¢ is arbitrary, the equality ||ulleo = ||u|l®. holds for all u € L®.
Assume that ®(t,-) has continuous derivative ®'(t, -). Define the functions u,, €
E® as in Lemma[3.7, with |u — u,| = |u| — |u,| | 0 almost everywhere. In virtue of

O* (D' (t,u)) < ®(u) + (D' (t,u)) = ud'(t,u) < /2u Q' (t, x)dr < O(t,2u),

and the Dominated Convergence Theorem, the map k — Ig« (P’ (¢, k|u,,(t)])) is finite-
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valued and continuous for all £ > 0, attaining zero at £k = 0, and tending to oo
as k — oo. Thus, for every n > 1, a number k, > 0 can be found such that
T (' (t, kn|un(t)]) = 1. Since [|u, (£)| (¢, knlun(t)])dp < |Jtn|o,0, it follows that

1
lunllao = 7= (1 + La(kntn))-

n

Clearly, the sequence {k,} is non-increasing. Moreover, according to

1 1
< (1 Tokatin)) = unllao < [lulo,

the sequence {k,} converges to some k* > 0. By Fatou’s Lemma, we have

1+ Ip(k™u) < lminf(1 + Ig(kyuy,)) < liminf &, ||ul|eo = £*||ul o0,
n—oo

n—o0

and, consequently,

1
lulle.a < 2= (1 + Te(k™)) < [lulla.o.
Therefore, the proof is finished. m

Lemma 3.17. Suppose that foru € L® there exists k > 0 such that I« (P, (¢, |ku(t)])) =
1. Then

Julloa = [ .t kD fu(olds

Proof. Using the the equality condition in Young’s Inequality, we have

Jullo < 31+ Ta(ku)
= 2 U (@ rult)) + To )
~ [ @ uoDlu(oldr
The inequality in the opposite direction follows by the definition of Orlicz norms. [

Lemma 3.18. Let u € L2.

(1) If 1o« (bo* Xsuppu) > 1, and we denote

k; = 1inf{k > 0 : Iop-(P' (¢, [ku(t)])) > 1}
ki =sup{k > 0: Ip« (P (¢, |ku(t)])) < 1},
then [k, k¥] # 0 and |Julleo = (1 + Io(ku)) if and only if k € [k}, k3¥].

uru

(i) If 1o (bo Xsuppu) < 1, then ||ulleo = fT|u]bq,*du.
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Proof. (i) For any ky, ke > 0 satisfying lo(kiu) < 0o, Io« (P’ (¢, |[k1u(t)])) < oo and

Is(kou) < 00, we can write
Lo (kau) = /|k2U(t)|‘1>’+(ta Fru(®)))dp — To- (P (¢, [Fru(t)]))
T
and

Lp(kyu) = /TIMU(t)\@l(ta [Fru(t))dp — To- (P (2, [kru(t)])).

Then we obtain

1 1 1
k—2(1 + Lp(kgu)) — k_l(l + [q,(klu)) = k—z[fcp(]{QU) — Lp(k‘lu)]
]{32 — kﬁl
T b [Io(kiu) + 1]
> 2B ([ 1o ¢ autt)
— Iq>(k‘1u) - 1)
_ ]{32 - ]{31

=B e @ 0 ) - 1), (13
Suppose that ks < k1 < k. By the definition of k7, it follows that I« (P’ (¢, |k1u(t)])) <
1. Thus, from , we can infer that J(k) = (1 + Io(ku)) is strictly decreas-
ing on the interval (0,k%). Now consider ko > k; > k}*. Hence we have that
To- (P, (t, |kru(t)])) > 1. In virtue of (3.13)), the function J(k) is strictly increasing
on (ki*,1/0(w)). If kf = k**, then J(k) attains its minimum at k = &k} = k¥*. As-
suming k; < k2, then we have that I« (®, (¢, |ku(t)])) = 1, for every k € (k, k%*).
In virtue of Lemma , it follows that [Julleo = [, ¥, (¢, [Fu(t)])|u(t)|dp = £(1 +
I (ku), for all £ € (KX, k**). By the continuity of J(k), we obtain that ||ulleo =

uru

(1 + Ip(ku), for all k € [k, k37].

w) tu

(ii) It follows by the definition of the Orlicz norm ||u||s . O
Lemma 3.19. Ifu € L* is such that K(u) =0, then ||lulleo = [,|u|bs-dp.

Proof. By the Monotone Convergence Theorem, we can write

.1
lulloo = lim (1 + To(ku)

k—o0
DO(t, klu(t
i () 2L KON
k—o0 supp u /{Z|U(t)|

—/ \u|d¢du—/\uldq>du,
supp v T
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and hence the proof is finished. O

3.4 Extensions to arbitrary Musielak—Orlicz functions

In this section some of the results for finite-valued Musielak—Orlicz functions are

extended to arbitrary Musielak—Orlicz functions.

Lemma 3.20. Every Musielak—Orlicz function ® is the limit of a non-decreasing
sequence of finite-valued Musielak—Orlicz functions {®,}, i.e., such that ®,(t,u) T
O(t,u), for allu >0, and p-a.e. t € T.

Proof. Define the Musielak—Orlicz functions ®,, according to

O, (t,u) = / n A (t,z)dx.
0

For @' (t,u) < n, we have (®,)! (t,u) = @ (t,u), and then ®,(t,u) = ®(t,u).
Clearly, ®,,(t,u) 1 ®(t,u) for all u > 0. O

The functional 84 is defined for each v € L® by
Op(u) = inf{\ > 0: Is(u/N) < co}. (3.14)

In Section [3.6] we will show how this functional is related to E®.

Proposition 3.21. Suppose that a Musielak—Orlicz function ®, and a sequence {®,,}
of finite-valued Musielak—Orlicz functions satisfy ®,(t,u) T ®(t,u), for all u > 0,
and p-a.e. t € T. Assume that u € L* for all n > 1.

(a) If the sequence {0, (u)} is bounded, then u € L® and s, (u) 1 Os(u).
(b) If the sequence {||u||s,} is bounded, then u € L* and ||ulle, T ||u/ o

(c) If the sequence {||ul|s, 0} is bounded, then u € L* and ||ulls, 0 1 ||uls.0-
(d) If the sequence {||ul|s, 4} is bounded, then u € L* and ||ul|s, 4 T ||ullo.a-

Proof. (a) Since Is,, (u/N) < Ig, (u/A) for any m < n and A > 0, we obtain 0g,, (u) <
g, (u). Thus there exists a ¢ > 0 such that 0¢_ (u) T c¢. From

Is(u/X) < liminf Ip, (u/A) < oo, for any A > ¢,
n—oo

it follows that u € L® and 0g(u) < c. If X < ¢ then for a sufficiently large n > 1 we

have A < g, (u), and consequently,

Is(u/N) > Ip, (u/N) > oo.
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Thus, ¢(u) = c.

(b) Similar to the proof of (a).

(c) Since ®*(t,v) < ®F (t,v) < &% (t,v) for every m > n, it follows that B(L®n) C
B(L*®») C B(L*"), and consequently

[ulle,0 < l[ulleno0 < [lulleo

Given & > 0, there exists v € L*" such that I-(v) < 1 and

/uvdu > ||lul|loo — €. (3.15)
T

Choose a measurable set S with finite measure p(S) < oo such that

/uvdu > / wodp — € (3.16)
s T

and Ig«(vxs) < 1. For any function f: R™ — (—o0, 00|, denote by cl(f) the greatest
lower semi-continuous function (not necessarily finite) majorized by f. In virtue of
[56, Theorem 16.5], we have

o*(t,v) = cl(inf, ®;(t,v)), forall v > 0.

Thus, ¢ (t,v) | *(t,v) for every v > 0, possibly except at v = be+(t). For 0 < av <
1, since |aw(t)| < bg«(t), there holds ®% (¢, av(t)) | ®*(t, awv(t)), for p-a.e. t € T. Let
Vo ={t € S:d*t,|v(t)]) = 0}. For each n > 1, define the measurable sets

Ap ={t € S\ Vo : O (¢, law(t)]) > (¢, [o(t)])}

and

By ={t € Vo: &t |av(t)]) > (1 = Lo+ (vxs))/1(Vo)}-

Clearly, A, | 0 and B,, | (). Hence there exists a number ng > 1 such that for all

n > ng we have
/ uvdp > /uvdu —€ (3.17)
S\(AnUB,) s

For every n > 1, define w, = avxs\(4,uB,)- From the definitions of A,, B,, we can

write

I(w) = [ eyt favdu+ [ @t lav(o))de
(S\Vo)\An Vo\Bn

< /(S\Vo)\An O (¢, |v(t)])du + /‘/O\Bn(l — Iy (vxs))/p(Vo)dp
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< Ip+(vxs) + (1 — Ip«(vxs)) = 1.
Collecting inequalities , and , we obtain
fulloo > | wwndi> allullen —32).

Therefore, by the arbitrariness of ¢ > 0 and 0 < a < 1, it follows that ||u||e, 4 T
[ulle.a-
(d) Clearly, ||ulle, 4 < ||u|le,,.a < ||u||e.a for every m > n. Given ¢ > 0, for each

n > 1, take a positive number k,, such that

1
lulle,.a < =1+ Lo, (kn)) < [[ulle,,a + <.
Obviously, {k,} is bounded from below by some positive number. We consider the
following cases.
Case 1. Suppose that {k,} is bounded from above. Taking a subsequence if

necessary, we may assume that k, — kg < oo. Hence

1
lulle.a < (1 + Lo (kou))
0

n—o0

1

— _<1 +/1iminf D, (t, |knu(t)|)du)
kO T
.1

< lim inf k‘_n(l + Is, (kyu))

< liminfl|u||e, 4 + €.
n—oo

Since € > 0 is arbitrary, we obtain that |[ul|e, 4 T ||¢]/e.a-
Case 2. Now assume that k, — oco. Select a number m > 1 such that m > 1/2e.

For any n > 1 such that k, > m, by the convexity of ®,(¢,-), we can write

%(1 + Iy, (mu)) < k—ilén(knu) + kin + % - kin < [ullo,.a +e.
Thus,
lallons < (1 + Lo(mu)) = lim —(1 + Lo, (mu) < lim [Julo, 4+ <
m n—00 M n—00
By the arbitrariness of ¢ > 0, it follows that ||u||e, 4 T ¢/ e.a- O

Corollary 3.22. For any Musielak—Orlicz function ®, the Orlicz and Luxemburg

norm are identical, i.e.,

lulloo = llullo.a, forallue L®.
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Lemma 3.23. Let ® be an arbitrary Musielak—Orlicz function. The Orlicz and

Luzemburg norms can be expressed respectively as

mmﬂ:mq

/uvd,u‘ v € LY and ||v]j¢- < 1} (3.18)
T

and

|lulle = sup{‘/ uvd,u‘ cv € L and |[v]|g-p < 1}. (3.19)
T

Proof. The equality in (3.6) follows from Lemma Let {®,,} be the sequence
found in the proof of Lemma [3.20l Clearly, ®*(¢,v) < ®X(¢,v) for every n > 1.

Hence if v € L®» is such that ||v]|¢: o < 1, we will have that v € L*" and ||v[|¢« o < 1.

ox0 < 1}
a0 < 1}

where the equality follows from Lemma [3.10] and the second inequality follows from
Holder’s Inequality. According to Proposition [3.21, we have that ||u|ls, T ||u/le-
Therefore, (3.19)) is verified. O

Then we can write

|Mm=wﬁ

< Sup{

< [lulle,

/uvdu‘ v € L* and ||
T

/uvdu‘ v € L? and ||v]
T

Lemma 3.24. Let ® be an arbitrary Musielak—Orlicz function. If u is a function in
L?® such that ||ullen < a <1, then the function v(t) = sgnu(t)- @' (¢, |u(t)|) satisfies
Ip(v) <a < 1.

Proof. Let {®,} be the sequence constructed in the proof of Lemma|3.20, In virtue of
ulle,0 < |lullep < o < 1, we get that the function v, (t) = sgnu(t) - (,,)", (¢, |u(t)])
satisfies Ipx (v,) < a < 1. Since (®,,)', (t,u) =n AP (t,u) and

o*(t,v), for 0 <wv < n,
O (t,v) =
0, for n < v,

it follows that |v,| 1 |v] and Ig«(v,) = g (vn) < a < 1. Thus Ig-(v,) T Ig-(v),
which implies that Ig«(v) < a < 1. O

Proceeding as in the proof of Lemma [3.12] and Theorem [3.13] we obtain the

result bellow.
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Proposition 3.25. Let ® be an arbitrary Musielak—Orlicz function. Then
lulle < llulleo < 2|lulle, for allu e L*.

Proposition 3.26. Let & be an arbitrary Musielak—Orlicz function. If u: T — R

is a measurable function such that

/ uvdy
T

< o0, foreachve L*,

then u € L®.

Proof. According to Lemma we can find a sequence {®,} of finite-valued
Musielak—Orlicz functions such that ®,,(¢t,u) 1T ®(¢,u), for all v > 0, and p-a.e.
t € T. Since ®*(t,v) < ®f (t,v) < &I (t,v) for every m > n, it follows that
B(L®) C B(L*=) C B(L?"), and consequently

/uvdu‘ < sup /uvd,u‘ < sup /uvd,u’ < 00.
T vEB(L®m )/ T veB(L®)|JT

Thus v € L® for every n > 1, and |[v]|s, 0 < |[v]|s,, 0 for every m > n. Moreover,

sup
veB(L%)

lvlle, < l|v|le,.0 < supveB(Up)UT uvdu| < 00. Then we can use Proposition M,
from which we obtain that u € L. O
3.5 Embeddings between Musielak—Orlicz spaces

We will give necessary and sufficient criteria for the inclusion between Musielak—

Orlicz spaces. We begin with the following technical result.

Lemma 3.27. Suppose that the measure u is non-atomic. Let {a,} be a sequence of
positive, real numbers, and let {u,} be a sequence of finite, non-negative, measurable

functions. Assume that

/ Updp > 2"av,,  for alln > 1.
T

Then there exist an increasing sequence {n;} of integers and a sequence {A;} of

pairwise disjoint, measurable sets such that
/ Up, dpt = oy, for all i > 1.
A;

Proof. Clearly, the measure mapping any measurable set E to [ 5 Undp is non-atomic.

Its is known [5, Corollary 1.12.10.] that if a measure v is non-atomic and A is a
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measurable set with v(A) > 0, then for any real number b satisfying v(A4) > b > 0
there exists a measurable set B C A such that v(B) = b. Hence we can find a
measurable set B; for which f B, urdp = . For each m > 1, at least one of the

following inequalities holds:

/ undp > 2"y, (3.20)
B

or

/ Updp > 2" ay,. (3.21)
T\B;

If there exists a subsequence {(u,1, a,,1)} of the sequence {(un, )} such that
is satisfied for every ¢ > 1, we take Ay = By and n; = 1. If this subsequence
cannot be found, then there is a subsequence {(up1, 1)} of {(uy, @)} such that
holds for every ¢ > 1. In this last case, since fT\Bl updp > aq, we choose a
measurable subset A; C T\ B; satisfying fAl urdp = aq and set nqy = 1. In order
to define Ay and n,, we proceed as above with 7"\ A; and {(up1, o,1)} in the place
of T and {(un, )}, respectively. Then we obtain a subsequence {(u,2,a,z2)} of
{(un1,0,1)}, a measurable subset Ay of T'\ A; and an index ny = nj > n;. In the
next step, we replace 7'\ Ay by T\ (A1 U Az), and {(u,1, ap1) b by {(un2, ap2)}, and
obtain a measurable set As and nz = n? > ny. The induction leads to sequences

{n;} and {A;} satisfying the required conditions. O

Lemma 3.28. Suppose that the measure p is non-atomic. Let ® and U be finite-
valued Musielak—Orlicz functions. For some X\ > 0, suppose that do not exist con-

stants 0 < A < X and a > 0, and a non-negative function f € LY such that
aV(t,u) < O(t, \u), for all u > f(t). (3.22)

Then we can find a strictly increasing sequence {\,} such that A, T X\, and sequences
{u,} and {A,} of finite-valued, measurable functions, and pairwise disjoint, mea-

surable sets, respectively, such that
Ty(upxa,) =1 and Is(Apunxa,) <27", foralln>1.

If (3.22) is not satisfied for Ay = A > 0, then A, can be taken equal to X\, for every
n>1.

Proof. Let {\ } be a sequence of strictly increasing positive numbers such that
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A1 A. Define the non-negative, measurable functions
fm(t) =sup{u>0:2""U(t,u) > ®(t,\ u)}, forall m > 1.

Since ((3.22)) is not satisfied, we have Iy (f,,) = oo, for all m > 1. In virtue of Lemma
2.4] and the Monotone Convergence Theorem, for each m > 1, we can find a simple
function vy, satisfying f,, > v, > 0 and 27"V (¢, v,,(t)) > P(t, A, vm(t)), such that
Iy(vy,) > 2™ By Lemma there exist an increasing sequence {m,} of indices
and a sequence {4, } of pairwise disjoint, measurable sets such that Iy (v, xa,) = 1.
Thus, A, = X, , Uy = Uy, and A, satisfy the statements in the lemma. If

does not hold for A\; = A > 0, we can repeat the above arguments with X/, = X. O

Theorem 3.29. Assume that the measure p is non-atomic. Let ® and U be finite-
valued Musielak—Orlicz functions. Then L* C LY if, and only if, there exist a

constant o > 0 and a non-negative function f € LY such that
aV(t,u) < O(t,u), forallu> f(t). (3.23)

Moreover, L®* C LY if, and only if, there exist constants a, A > 0 and a non-negative
function f € LY such that

aV(t,u) < O(t, Au), for allu > f(t). (3.24)

Proof. If the functions ® and ¥ satisfy (3.23), then obviously L® C LY. Now
assume that the inclusion L®* C LY holds, and that (3.23) is not satisfied. According
to Lemma there exist sequences {u,} and {A,} of finite-valued, measurable

functions, and pairwise disjoint, measurable sets, respectively, such that
Iy(upxa,) =1 and Ig(upxa,) <277, foralln>1.

Define u = > | unxa,. Then we have Iy(u) = 0o and Ig(u) < 1. This provides a
contradiction, since L® C LY. Thus, there exist a constant o > 0 and a non-negative
function f € LY such that is satisfied.

The part of the proof concerning the inclusion L® C LY follows similar argu-
ments. Clearly, if is satisfied, then L® C LY. Conversely, assume L® C LY
and that does not hold. Then the use of Lemma provides a sequence
{An} of strictly increasing positive numbers such that A, 1 oo, and sequences {u,,}
and {A,} of finite-valued, measurable functions, and pairwise disjoint, measurable

sets, respectively, such that

Iy(unxa,) =1 and Ip(Munxa,) <277, foralln>1.
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Define u = Y7 | Ayt xa,. Then we have Ip(u) < 1. For every [ > 0, and a natural
number ny chosen such that [\,, > 1, we have that Iy(lu) = >~ Ty(I\unxa,) >
> o Tw(tnxa,) = co. Thus, u € L® and u ¢ LY. Therefore, (3.24)) holds for some

constants o, A > 0 and a non-negative function f € LY. O

Proposition 3.30. Suppose that the measure j is non-atomic. Let ® and ¥ be
finite-valued Musielak—Orlicz functions. If L* C LY, then L® is continuously em-

bedded into LY.

Proof. Let {u,} be a sequence in L® that converges to some v € L*®. Then, for
every A > 0, we have that I¢(k(u, —u)) — 0 as n — oo. According to Theorem
m we can find constants o, A > 0 and a non-negative function f € LY such that

a¥(t,u) < O(t, ), forall u> f(t).
Hence we can write

aly(k(up —u)) = aly(k(tn — )X (kjun—ul>ry) + Lo (k(Un — U)X {kun—ul<f})
< To(Me(up — ) + ady (k(tn — W)X hjun—ul<f})- (3.25)

The fist term in the right-hand side of tends to zero as n — oo. The second
one converges to zero, by the Dominated Convergence Theorem, since Iy (k(u, —
W)X {kfun—ul<f}) < Tw(f) < 0o. Then, for every k > 0, we have that Iy (k(u,—u)) = 0
as n — oo. Consequently, the sequence {u,} converges to u in LY. Therefore, L*®

is continuously embedded in LY. O

3.6 The Morse—Transue space

Assume that the finite-valued Musielak—Orlicz function ® does not satisfies the

As-condition. We will show that there exist functions u, and w* in L® such that

Io(\u, C for0< A<,
o(Auy) < 0o or (3.26)
Ips(Auy) =00,  for 1 < A,

and
I(Au* for0< <1
o(Au*) < oo, or 0 < A< 1, (3.27)
Ip(Au*) =00,  for 1 < A

According to ([2.15]), for any 0 < A\ < 1, does not exist a constant 0 < o < 1 and a

non-negative function f € L® such that

ad(t,u) < ®(t, \u), for all u > f(t).
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Thus we can apply Lemma|3.28] which provides a sequence {\,,} of strictly increasing
positive numbers such that A, 1 1, and sequences {u,} and {A,} of finite-valued,

measurable functions, and pairwise disjoint, measurable sets, respectively, such that
Ip(upxa,) =1 and Ip(Aupxa,) <277, foralln> 1.

Define u, =Y o0 | Ayt Xa, and u* = "2 u,xa,. We verify that the functions wu,
and u* satisfy (3.26)) and (3.27)), respectively. Indeed, for A < 1, we have Ip(Au,) < 1.

If A > 1 and the natural number ng is such that A\, > 1, we can write

no—1
To (M) Z]q, MattnXa,) = > To(Mnttnxa,) + Z Lo(unxa,) = 00
n=1 n=1 n=ng

Considering u*, for A > 1, we have Is(Au*) = oo. If A < 1 and the natural number

ng is such that A < \,,, we obtain

o) no—1
=5 Ie(unxa,) < Y Is(hunxa,) Z Ip(AntnXa,)
n=1 n=1 n=ng

Thus, u, and u* satisfy the desired assumptions.

Remark 3.31. The sequences {u,} and {\,} are useful in showing that a Musielak—
Orlicz space L®, whose function ® does not satisfies the A,-condition, is not strictly

convex with respect to the Luxemburg norm ||-||¢. Define the functions

U= Z AnlUnXa, and v = Z Anln XA, -
= n=2
Clearly, we have I(v) < Ip(u) < 1, and Ip(5u) > Ip(5v) = oo, for 0 < A < 1.
Hence |ulls = [[v]le = 1. In addition, we can write Is(*E%) < Iop(u) < 1, and
Ip (") > Ip(3v) = oo, for 0 < A < 2. Consequently, ||“+%||4 = 1. This shows that

L? is not strictly convex with respect to the Luxemburg norm |[|-||¢

Clearly, every Musielak—Orlicz function ® that is not finite-valued satisfies that
E® ¢ L®. Therefore, for a Musielak—Orlicz function ® that does not satisfies the
As-condition, we have that E* ¢ L®. According to defining the Ay-condition,
it follows that if a Musielak-Orlicz function ® satisfies the A,-condition, then L® =
E?®. We obtained the following result:

Theorem 3.32. Let ® be an arbitrary Musielak-Orlicz function. Then L® = E® if
and only if  satisfies the As-condition.

Let W be any subset of L®. We denote by By(W,r) the set of all functions
u € L® such that do(u, W) = inf,ewl||u — w|leo < r. The closure of By(W,r) will
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Figure 3.1: Musielak-Orlicz class L2.

be denoted by Bo(W, 7). If By(u,r) is the open ball of radius r centered at u € L?,
with respect to the Orlicz norm, then clearly Bo(W,r) = J, e Bo(w, 7).

Proposition 3.33. Suppose that the Musielak—Orlicz function ® does not satisfy
the Ay-condition. Then By(E®,1) ¢ L* G Bo(E®,1). (See Figure )

Proof. Assume that the functions vy € E® and v € L® and the number o« > 0
satisfy |[u — uollpp < @ < 1. From Lemma [B.11] we have that (u — ug)/a €
L®. Clearly, uo/(1 — a) € E® ¢ L®. By the convexity of L%, it follows that
the function u = a(u — ug)/a + (1 — a)ug/(1 — a) belongs to L®. Therefore, the
inclusion By(E®,1) € L® holds. We will show that every function u € L® satisfies
do(u, E®) < 1. In virtue of Lemma , for any € > 0, a function u. € E® can be
found such that Iy (u—wu.) < €. Then we obtain that do(u, E®) < ||lu—u.|leo < 1+e.
Since ¢ is arbitrary, do(u, E®) < 1. Consequently, L* C By(E®,1).

The functions u, and u* given in (3.26)) and (3.27) show that the inclusions are
proper. We know that u, € L* and u* ¢ L®. We claim that the function u, does
not belong to By(E®,1). Indeed, if d(u., E®) < 1, we could find an & > 1 such that

do (o, E(D) = wiEng@Hau* —wl[ep = ozwiengq)Hu* - w”<1>,0 <L

This fact implies au, € By(E?®,1) C ffl’, which contradicts how wu, was constructed.
We shall show that u* € By(E®,1). The function u* does not satisfy do(u*, E®) >
1, since an a < 1 could be found such that do(cu*, E*) > 1. Thus, we have
do(u*, E®) = 1, and, consequently, u* € Bo(E®, 1). ]

Recall the definition of 0¢(-) given in ([3.14)).

Theorem 3.34. Let ® be a finite-valued Musielak—Orlicz function. For anyu € L?,
consider the sequence {u,} C E® defined in (3.4). Then

lim ||u — up||e0 = do(u, E®) = lim ||[u — u,||e = d(u, E®) = 0 (u). (3.28)
n—00 n—o0
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Proof. The functions |u — u,| = |u| — |u,| are non-increasing, and thus their norms
do not increase and have a limit. For any A € (0,0¢(u)), we have Is(u/)\) = 0o, and
then I ((u — uy,)/A) = Ip(u/A) — Ip(u,/A) = 0o. Consequently, ||u — uy,|le > 0o (u)
for all n > 1. Hence
lim ||u — upl|eo > lm ||u — uyl|e > 0o (u). (3.29)
n—oo

n—oo

Now, for A > 6g(u), we have Ig(u/N) < oo, and then lim, o lo((u — u,)/A) = 0.

By the Amemiya expression for the Orlicz norm, we can write
v —unlloo < AL+ Is((w —un) /X)) = A, asn — oo.

Thus, lim, 00|l — un|leo < 0s(u), and the inequalities in (3.29)) are reduced to

equalities. Since
Op(u) = lim ||u — u,|le = lim ||u — uplle0 > do(u, E*) > d(u, E®),
n—oo n—oo

the proof will be finished if we show that d(u, E®) > 04 (u).
Pick up any ¢ € (0,0g(u)). Take any function v € E®, and define

Un = UXBp»

where B, = {t € T,, : |u(t)] < n and |v(t)] < n}. The sequence of measurable
sets {B,} is increasing and (T \ |J,~, B,) = 0. By the Dominated Convergence

Theorem, we have that
Is((v —vy)/e) = Is(vxm\B,/€) = 0, asn — oo.

There is ng > 1 such that Io((v—wv,)/e) < 1, and then ||v—wv,||e < g, for all n > ny.

Now, since v,, vanishes outside the set B,,, we can write

Io((u—vn)/(0a(u) — €)) = Io((u — va)xB,/(Oa(u) — €)) + Lo(ux\p,/(fs(u) — €))
> Io(uxr\p,/(bo(u) —€)) = oo.

Thus, ||u — v,||e > Op(u) — e. For any n > ng, we obtain
[u = vlle = flu=vnlle = flv=valle = Oa(u) — & — & = o (u) — 2.

Since w € E® and € > 0 are arbitrary, we get that d(u, E*) > 0g(u). O
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3.6.1 Convergence in mean

A sequence {u,} C L% is said to converge in mean to a function u € L?® if
Ip(u, —u) — 0 as n — oo. In virtue of Lemma [3.11] convergence in norm implies
convergence in mean. But generally the converse is not true. We will construct a
sequence that illustrates this when the Musielak—Orlicz function ® does not satisfy
the As-condition.

Suppose that & does not satisfies the As-condition. Then we cannot find a

constant & > 0 and a non-negative function f € L® such that
ad®(t,u) < (t, su), for all u > f(t).

From Lemma there exist sequences {u, } and {A,} of finite-valued, measurable

functions, and pairwise disjoint, measurable sets, respectively, such that
Ip(unxa,) =1 and Is(iunxa,) <277, foralln>1.

For each n > 1, define the functions v, = %unXAn‘ Clearly, the sequence {v,}
converges in mean to 0. According to Lemma [3.12] we have lim, . I4(2v,) <
lim,, 00 [|20n ||0,0 = 0. Since Ig(2v,) = Ig(unXa,) = 1, we obtain that {v,} does not

converge in norm to 0.

Theorem 3.35. Convergence in mean is equivalent to convergence in norm if, and
only if, the Musielak—Orlicz function ® satisfies the Ag-condition.

Proof. The sequence {v,,} constructed above shows that if convergence in mean is
equivalent to convergence in norm, then & satisfies the As-condition. Conversely,
assume that the As-condition holds for the function ®. Let {u,} be a sequence in
L?® converging in mean to v € L?, i.e., such that Is(u, —u) — 0 as n — oo. We

can find a constant a > 0 and a non-negative function f € L® such that
a®(t,u) < (¢, Ju), for all u > f(t).

Iterating m times the above inequality, we obtain ®(t,2"mu) < a~™®(t,u), for all
u > f(t). Thus,

Lo (2" (un — w)) = T (2™ (tn — w)X{un—u/>r}) + Lo (2" (Un — W) X{un—u<s})
<o Mg (un — w) + Io (2™ (U — U)X {jun—ul<f})- (3.30)

Since {u,} converges in mean to u, the fist term in the right-hand side of ({3.30))
tends to zero as n — oo. The second one converges to zero, by the Dominated

Convergence Theorem. Then, for every m > 1, we have that I4(2"(u, — u)) — 0
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as n — 00. A natural number ng can be found such that (2™ (u, —u)) < 1, for
every n > ng. Consequently, ||u, — u|ls < 27™ for all n > ny. Since m is arbitrary,

the sequence {u,} converges to u in norm. O



4 The dual of L?

We denote by (L®)" the collection of all linear functionals on L®. A functional
f € (L®) is said to be positive whenever f(u) > 0 for every function u > 0 in L®.
For any f,g € (L?*)', the relation f > g (or g < f) will denote that f — g is positive.

Lemma 4.1. Let f be a linear functional on L® such that sup{|f(v)| : |v| < u} is
finite for any uw € LY. Then the modulus | f| := sup{f, —f} exists, and the equality

|f1(u) = supf[f(v)] : Jo| < u}
holds for each u € LY.

Proof. Since sup{|f(v)| : |v| < u} is finite for any u € L?, we can define the
function f: L? — R given by f(u) = sup{|f(v)| : |v| < u}, for each u € L®.
Clearly, f(u) = sup{f(v) : |v] < u}, for each u € L®. We will show that f is
additive on L?. Let u,v € LY. If [a| < wand [b] < v, then |a+b] < |a|+[b] < u+w,
and f(a)+ f(b) = f(a+b) < f(u4v). Hence f(u)+f(v) < f(u+wv). For |a| < u+wv,
take a; and ay with @ = a; + ag such that |a;| < w and |as| < v. We can write
f(a) = flar) + f(az) < f(u) + f(v), and then f(u+v) < f(u) + f(v). Therefore,
flutv) = fu) + f(v).

For any u € L® we denote its positive and negative parts by

v = max(0,u), u~ = max(0, —u), (4.1)

respectively. The functional f : L? — R extends to a unique linear functional on
L?® (which is also denoted by f) defined by f(u) = f(u") — f(u~) for each u € L?.
Clearly, f satisfies f > +f. We will show that f is the supremum of {f,—f}. Let
g be any functional in (L?)’ such that g > 4 f. Notice that g is positive. For any

u € L? and v € L?® such that |v| < u, we have

f)=f@") = fl07) <g") +g(v") =g(v]) < g(u).

Consequently, f(u) < g(u) holds for all u € L®. Therefore, f is the supremum of
{f,—f}in (L?). O
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A set S C L?® is called order bounded if there exists some u € LY such that
|v] < ufor all v € S. A functional f € (L?) is said to be order bounded if it
maps order bounded sets in L® to bounded sets in R. The set of all order bounded
functionals in (L?) is denoted by (L®)~, called the order dual of L?.

Lemma 4.2. For every f,g € (L®)~, the supremum fV g = sup{f, g} and infimum
fAg=inf{f, g} exist, and the expressions

(f V g)(u) = sup{f(v) + g(w) : v,w € LY and v +w = u}
(f A g)(u) = inf{f(v) + g(w) : v,w € LT and v+ w = u}

hold for all u € LT.

Proof. According to Lemma the modulus of any functional in (L*)™~ exists and
belongs to (L®)~. Let f,g € (L*)~. The existence of fV g and f A g follows from

fVg=5(f+a+1f )

and

frg=5(f+a-1f g

Fix any u € L?. Tt is easily verified that two functions v,w € LY satisfy v+ w =u
if, and only if, there exists some function |z| < u with v = $(u+2) and w = 3(u—2).

Hence we can write

(FV )(u) = 5(F(u) + g(u) +1f — gl(w)

= 2 sup{f(u) + g(u) + £(2) ~ 9(2) o] < u)

= sup{f(v) + g(w) : v,w € L and v + w = u}.

The expression for f A g is proved analogously. O

Thus, for any f € (L?)™, its positive part f* = 0V f and negative part f~ =
0V (—f) satisfy

for each u € L.
A sequence {u,} in L? is said to be order convergent to a function v € L?®

written u, — u) whenever there exists another sequence {v,} in L® satisfyin
¥ ymg
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vp 4 0 and |u, —u| < v, for all n > 1. A functional f € (L®) is said to be order
continuous if u,, = wu in L® implies f(u,) — f(u). The collection of all order

continuous functionals in (L?)" is denoted by (L®)7".
Lemma 4.3. (L*) C (L*)~.

Proof. Let f € (L®)7. For any u € LY, consider the sequence u,, = %u Since u,, | 0
and f(u,) — 0, for some ny > 1 it follows that |f(u,)| < 1 for every n > ng. Thus
|f(u)| < ng. Hence f maps any order bounded set in L® to a bounded set in R. [

Lemma 4.4. For a functional f € (L®), the following statements are equivalent:
(a) f is order continuous;
(b) if up, L 0 in L, then f(u,) — 0;
(¢) ft and f~ are order continuous;
(d) |f]| s order continuous.

Proof. (a)=-(b). The implication is trivial.
(b)=>(c). Let {u,} be a sequence in L? such that u, | 0. Thus f*(u,) | € for

some € > 0. We will show that ¢ = 0. Denote u = u;. For any 0 < v < u, we have
0<v—vAU, =VAU—VAU, < U— Uy,
from which we can write
f0) = flonun) = flo—vAun) < f7(u—un) = fT(u) = f7(un).
Thus, for any 0 < v < u, there holds
0<e< fM(un) < [T (W) +[f(vAua)| = f(0).

By the hypothesis, v A u,, | 0 implies that f(v A u,) — 0. Hence it follows that
0<e< ff(u)— f(v) for all 0 < v < w. Since ft(u) = sup{f(v) : 0 < v < u}, we
conclude that e = 0. Thus f* is order continuous. The order continuity of f~ is
provided by the equality f~ = f* — f.

(¢)=(d). Tt follows from |f| = f* + f~.

(d)=>(a). The implication is a consequence of the inequality |f(u)| < |f|(Jul),
for any u € L?®. O

If A is a nonempty subset of (L*)~, then its disjoint complement A< is defined
by
AY={fec (L™ :|f|Alg] =0 for all g € A}.
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Note that AN A4 = {0}. We denote by (L*);" the disjoint complement of (L?). A

functional in (L?)> will be said to be purely singular.

Theorem 4.5. The space (L*)~ admits the direct sum decomposition (L®)~ =
(L®)> @ (L®)T. Hence every functional f € (L®)™ is uniquely represented as f =
fo + fs, where f. € (L*)Y and f, € (L®)Y are called the order continuous and

C S

singular component of f, respectively.

Proof. Let f be any positive functional in (L®)~. Denote D = {g € (L*)y : 0 <
g < f}. Indexing D by itself (i.e., fo = a for a € D), we get a net {f,}aep with D
ordered by “<”. For each u € LY, we define f.(u) as the limit f,(u) 1 f.(u). Clearly,

fe is additive on L. Thus f, extends to a unique functional in (L*)" (which is also

denoted by f.) defined by f.(u) = f.(ut) — f.(u~) for each u € L®. Next we show
that f. belongs to (L?)7. Let 0 < u, T u for any u € LS. We can write

0< fc(u - un) < (fc - fa)<u) + fa(u - un)

Since u — u, } 0 and f, € (L*)7, it follows that 0 < inf fo(u — u,) < (fe — fa)(u).

Cc?

From f,(u) T f.(u), we get inf f.(u — u,) = 0, and hence f.(u,) 1 fe(u). Therefore,
fe € (L?)y.

Now denote f; = f — f. > 0. Take any positive functional g € (L?)7. Clearly,
0< fsAge (L. From 0 < f.+ fo Ag e (L®)T and

fet fsng < (fet+ f)N(fetg)=FfA(fe+9) <,

it follows that f. + fs A g < f.. Consequently, fy A g = 0. Since g € (L®)7 is
arbitrary, f, belongs to the disjoint complement of (L®)7, ie., f, € (L?). Thus
J = Jc+ Js implies (LCD)N = (LCD)CN D (LCD):' u

Lemma 4.6. Let f be a positive, purely singular functional in (L®)~. If the positive,

order continuous functional g € (L*)™ satisfies 0 < g < f, then g = 0.

Proof. Let u € Lf. Since f A g =0, for any € > 0 we can find v,w € Lf satisfying
v+ w = wu such that f(v) < e and g(w) < e. Hence we have

g(u) = g(v) + g(w) < f(v) +e < 2.
Since € > 0 is arbitrary, it follows that g(u) = 0 for all u € L?. O

Theorem 4.7. For any positive functional f € (L®)~, the expressions

fe(u) = inf{sup f(u,) : 0 < u, T u} (4.2)
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and

fu(u) = sup{inf f(u) s w > w, |0} (4.3)

hold for all uw € LT.
In the proof of the result above, we will make use of the next two lemmas.

Lemma 4.8. For any positive functional f € (L*)™, the expression
P.(f)(u) = inf{sup f(u,) : 0 < u, T u}, for any u € LY, (4.4)

defines a positive functional in (L*)~. Moreover, for any positive f,g € (L®)~, we
have P.(f + g) = P.(f) + Pe(g)-

Proof. We will show that P.(f) is additive on Lg. Let u,v € L?. For any € > 0, we

can find sequences 0 < u, T v and 0 < v, T v satisfying

sup f(un) < Fe(f)(u) +¢,
sup f(vn) < P

Since (u, + v,) T (u + v), we obtain

Po(f)(u+v) <sup f(un +v,) = sup f(un) + sup f(vn)
< Po(f)(u) + Pe(f)(v) + 2e.

By the arbitrariness of € > 0, we have P.(f)(u +v) < P.(f)(u) + P.(f)(v). Given
any € > 0, a sequence 0 < w, T (u+ v) can be found such that sup f(w,) <

P.(f)(u+v) +e. Define the sequences u,, = w, Au and v,, = u+ v — w, A u. Hence

0<u,Tuand 0<w,Twv, and we can write

Po(f)(u) + P(f)(v) < sup f(un) +sup f(v,) = sup f(wy)
< P(f)(u+v)+e.

Since € > 0 is arbitrary, it follows that P.(f)(u +v) = P.(f)(u) + P.(f)(v).

Next we show that P.(f + g) = P.(f) + P.(g), for any positive f,g € (L*)™.
Let u € Ljf. For any ¢ > 0, a sequence 0 < wu, T u can be found such that
sup(f + g)(un) < P.(f 4+ g)(u) + . We can write

Po(f)(u) + Pe(g)(uw) < sup f(un) + sup g(u,) = sup(f + g)(un)
< P(f+g)(u)+e.
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Hence P.(f)(u)+P.(g)(u) < P.(f4+g)(u). Let {v,} and {w,} be sequences satisfying
0 <wv,Tuand 0 < w, T usuch that

sup f(vn) < Pe(f)(u) + ¢,

Denoting u,, = v, N\ w,, we can write

Po(f + g)(u) < sup(f + g)(un) = sup f(un) + sup g(u,)
< sup f(vn) + sup g(wn)
< Pe(f)(u) + Pe(g)(u) + 2e.

Therefore, Po(f + g)(u) = Po(f)(u) + Pe(g)(u), for all u € L?. O
Lemma 4.9. The functional P.(f) given in (4.4)) is order continuous.

Proof. Fixed any u € L2, let 0 < u, T u. We will show that P.(f)(u — u,) { 0.
For any ¢ € (0,1), let f, be the functional in (L?)~ that equals f on the support of
(eu—u,)" and vanishes on the support of (eu —u,)~, i.e., fo(v) = f(VXsupp(ru—un)*+)
for all v € L®. Thus f > f, | g for some g € (L?)". Since 0 = f,,((u, — eu)*) >
g((up, —eu)™) holds for all n > 1, and 0 < (u, —eu)™ 1 (1 — £)u, we have that
P.(g9)(u) = 0. From

0<u—u, <(1—e)u+ (cu—u,)t,
we obtain
0 < Pe(f)(u—up) < (1= e)Pe(f)(u) + Pe(f)((eu — un)"). (4.5)
Since f(v) = fu(v) for 0 < v < (cu — uy)™, we can write

Pe(f)((eu—un)") = inf{sup f(v;) : 0 < v; T (ew —un) "}
= inf{sup f,,(v;) : 0 < v; T (eu — u,)*}
= Po(fo)((eu — un) ") < Pe(fa) (w). (4.6)

In virtue of Pe(g— fn)(v) < (9— f)(v) L 0 for all v € LT, and the additivity of P, it
follows that P.(f,)(u) J P.(g)(u) = 0. From (4.6)), we obtain P.(f)((eu—wu,)") =0,
for all n > 1; and hence (4.5) results in

0 <inf P.(f)(u —u,) < (1 —e)P.(f)(u),
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for all € € (0,1). Thus, P.(f)(u,) T Pe(f)(uw). O

Proof of Theorem[{.7]. Clearly, P.(f) = f supposing that f is order continuous.
By Lemma and Lemma [1.9] the inequality P(f) < f implies that P(f) = 0
if f is purely singular. Thus, in virtue of Lemma [4.8] it follows that P.(f) =

PC(fc)+PC(fs):fc- O

Let (L®)* denote the topological dual of L?, i.e., the set of all continuous linear

functionals on L®.
Theorem 4.10. (L®)* = (L®)~.

Proof. Clearly, (L*)* C (L*®)~. Suppose that f € (L*)™ is not continuous. Without
loss of generality, we may assume that f > 0. For every n > 1, there exists
{u,} C L2 such that |ju,lle < 27" and |f(u,)| > n. Let v = > 7 u,. Since

L?® is complete in norm, we have that v € Lg. It follows that |f(u)| > |f(u,)| > n,

for all n > 1. This is a contradiction. Hence f is continuous. O

For any f € (L?)*, we define the norms

flu flu
1o = sup LU g gy = sup L
S0 Tl S0 Tl

i.e., the norm of f is denoted by | f|lo when L?® is equipped with the Luxemburg
norm, and is denoted by || f|| when L?® is equipped with the Orlicz norm.

Theorem 4.11. For each order continuous, linear functional f: L* — R, there

corresponds a unique v € L such that

flu) = /Tuvdu, for allu € L*. (4.7)

Moreover, ||fllo = ||v]e+0 and || f]| = ||v]

¢,*.

Proof. If the linear functional f: L® — R is given as in , then by the Dominated
Convergence Theorem it follows that f is order continuous.

Conversely, given any order continuous, linear functional f: L?* — R, we will find
av e L* such that f(u) = [, uvdy, for all u € L®. We can find a sequence {7}
of pairwise disjoint, measurable sets satisfying p(7,) < oo and pu(T'\ U.~, T») =0,
such that y7, € L®. For each n > 1, we define functions v,,: ¥ — R as v,(A) =
f(xant,), for any measurable set A. Obviously, v,,(f)) = 0. Let {A;} be a sequence
of pairwise disjoint, measurable sets. Denote A = |J°, 4; and B; = (J_, A
Hence xp,nr, T Xant, as j — oo. The order continuity of f implies that v,(A) =

Yooy vn(A;). Thus, v, is a measure. Clearly, v, is absolutely continuous with respect
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to p. For any measurable set A, we have |v,(A)| = |f(xz.na)| < Ifll IxTinalle <
| lIxT, ||o- Thus, the measure v, has finite total variation |v,|(T) < 2sup{|v,(A)] :
A e X} < 2|fllllxz,lle- The Radon-Nikodym Theorem provides a p-integrable
function v,: T — R such that v,(A) = fT XAUndp, for every measurable set A.
Clearly, v,(t) = 0 for p-a.e. t € T\ T,. Define v = > >° w,. Then, for any

measurable set A such that y4 € L?, we have
Fxa) =Y f(xarm,) = > va(A)
n=1 n=1
= Z/ XAUndp = / Xavdj.
n=1"T T

Consequently, the equality f(u) = fT wvdyp holds for every simple function v € L.
Let u be any function in L®. There exists a sequence {u,} of simple functions
in L*® such that |u — u,| = |u| — |u,| L 0. Since [ |u,vldp = f(sign(v)|u,|) <
£ unlle < N1fI ulle and [, |u,vldp T [ |uv|dp, we have that uv € L'. Then we
can apply the Dominated Convergence Theorem to the sequence {u,v}, which pro-
vides f(u) = limy o0 f(tn) = iMoo [ ugvdp = [, uvdp. Therefore, the equality
f(u) = [, uvdp holds for every u € L*. In virtue of Proposition m, the function

v belongs to L* . The assertions relative to the norm of f follows from Lemma

B3.23 O

Reciprocally, every functional f defined as in (6.2)) by a function v € L®" is order

continuous. Thus we have the identification (L®) ~ L?", and we can write
(L) =L & (7).
Every functional f € (L*®)* can be uniquely expressed as

f:fv+f57

where, for some v € L®", the functional f, is given by f,(u) = fT uvdp for all
u € L?, and f; is the singular component of f.

Assuming that the Musielak—Orlicz function @ is finite-valued, we obtain further
that (E®)* ~ L®". In order to show this identification, another characterization of

E? is given.

Theorem 4.12. Let ® be a finite-valued Musielak—Orlicz function. Then E® coin-
cides with the set E* composed by all functions u € L* such that for every sequence

of measurable functions 0 | u, < |u| there holds ||u,||s J 0.
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Proof. Suppose that u € E®. For any A\ > 0, we have Ip(A\u,) < Ip(A\u) < co. By
the Dominated Convergence Theorem, it follows that Ig(Au,) | 0 for any A > 0.
Therefore, |luylle 4 0 and w € E* Conversely, assume that u € E®. Take the
functions u, as in Lemma [3.7 Thus the functions v, = |u — u,| = |u| — |u,| satisfy
0 v, < |u|. By the assumption that u € E* we have ||v,|le = ||[u — un|le | 0. In
virtue of Theorem [3.34} it follows that u € E®. O

From , if f € (L*)* is singular, then f(u) =0 for all v € E®. On the other
hand, in virtue of , a bounded linear functional f such that f|ze = 0 has order
continuous component f. = 0. Thus a bounded linear functional is singular if, and
only if, its restriction to E® is zero.

Assume that f € (L®)* is order continuous. The functional f is completely
characterized by its restriction to £E®. For any u € L®, there exists a sequence
{u,} C E? such that u,, — u and |u,| 1 |u|, and then the order continuous functional
f satisfies f(u,) — f(u). Every f € (E®)* is order continuous, and consequently
f extends uniquely to an order continuous functional in L®. Therefore, (E®)* ~
(L) ~ LY.

For each u € L®, we associate the values
Qo (u) = sup{inf||u,||e : |u| > u, | 0}, (4.8)

and

Qoo(u) = sup{inf||u,|leo : |u| > u,  0}. (4.9)

These functionals are intrinsically related to the norm of a singular functional. We
provide a partial generalization of Theorem for arbitrary Musielak—Orlicz func-
tions, where the limits in (3.28]) are replaced by the functionals Qg () and Qe o(:).

Proposition 4.13. For every u € L®, there hold the equalities Op(u) = Qo(u) =
Q@,O(U)-

Proof. Let {u,} be a sequence in L?® satisfying |u| > wu, | 0 and Qgo(u) — & <
inf||up||eo. Take any A > Og(u). Since Ip(u/A) < oo, we obtain Ig(u,/A) | 0. Thus

Q@ﬁ(ﬂ) — & S inf||un||q>70 S 1nf)\(1 + ]¢(un/)\)) = )\

Hence by the arbitrariness of ¢ > 0 and A > 6 (u), we have that Qg (u) < Op(u). It
is obvious that Q¢ (u) < Qe o(u). Let {®,,} be a sequence of finite-valued Musielak—
Orlicz functions such that ®,,(¢,u) T ®(¢,u), for all w > 0, and p-a.e. t € T. In virtue
of Theorem it follows that ¢ (u) < Qe,(u), and hence Og, (u) = Qq, (u) for
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every n > 1. Then we can write

0, (u) = Qs, (u) < Qa(u) < Qoo < Os(u),

for each n > 1. From Proposition we have that 0 (u) T 0g(u). Thus Og(u) =

Qa(u) = Qa0 u
Proposition 4.14. If the functional f € (L®)* is purely singular, then
Il = sup JU and ] = s PL g
or, equivalently,
17l =171 = sup f(u)] = sup T (.11)
ueL® uere 0o (u)

Proof. Without loss of generality, we assume that f is positive. The equivalence
between (4.10)) and (4.11)) follows from Proposition m For any u € LY, we have

f(u) = sup{inf f(u,) :u >u, | 0}
< sup{inf[| f[|[|unllo0 : v > un | 0}
= |[fl sup{infljunlleo : v = un | O}
= [f11Qa0(u) = [ f]|0e(w).

Since ||ulle < |Jul|eo for any u € L?, it follows that

Fl o L)

" uere ufle

IfII' = sup

aez® ||ulleo

= [lfllo-

In virtue of B(L®) C L®, and 6g(u) < 1 if u € L®, we can write

|f ()]

< -~ 7

I7llo < sup ()l < sup 5 oes
)] _ W)

: wers Oa(u) uer® Oa(u)

< |-
Thus (4.11)) is verified. O

Proposition 4.15. Every functional f = f.+ fs € (L®)* satisfies || f|lo = || fello +
1fslo-

Proof. Without loss of generality, we can assume that f is positive. Clearly, || f|lo <
I fello + I fsllo- Given any € > 0, positive functions u,v € S(L?) can be found such
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that
few) >l fcllo—e,  and  fi(v) >[I fsllo — e

In virtue of (4.3)), there exists a sequence v > v, | 0 satisfying inf fs(v,) > fs(v) —e.
Denote w,, = u V v,. For n > 0, there exists ng > 1 such that Is(v,) < n, for every

n > ng. By the inequalities
IfI’(wn) < I@(u) + I@(Un) < 1+ 7,

we have that ||w,|le < 14 n, for every n > ny. Hence we can write, for n > no,

A+ fllo = lwnllellfllo = f(wn) = fe(wn) + fs(wn)
> fe(w) + fivn) = fe(u) + fi(v) — €
> |[fello + [ fsllo = 3e.

Since €,71 > 0 are arbitrary, it follows that || f]lo > ||fcllo + || fsllo- O

Proposition 4.16. For every functional f = f, + fs € (Lg)*, we have that ||f|| =
inf{\ > 0: Iop-(v/X) + || fs/ ]| < 1}.

Lemma 4.17. Letu: T — [0,00) be a measurable function satisfying ®(t,u(t)) < oo
for p-a.e. t € T. Then there exists a sequence {u,} C Zf such that w, T u.

Proof. Let {T,,} be a non-decreasing sequence of measurable sets, with finite mea-
sure, such that 7,, T 7. We define the functions u, = wuya,, where A, = {t €
T, : ®(t,u(t)) < n)}, for n > 1. Clearly, u, T u. Moreover, we have that
Is(u,) < nu(Ty,), and hence u,, € L2. O

Proof of Proposition[4.16. Without loss of generality, we assume that || f|| = 1 and
f>0. Let u e S(L?). Take any A > 0 satisfying Ip-(v/A\) + || fs/N| < 1. For k >0
such that Iy (ku) < oo, we get

1 1/1 1
< %(Lp(k‘u) + Ia-(0/2) + | fo/AlD
< (14 Ta(hu)),

which implies that §f(u) < |lullep = 1. By the arbitrariness of v € S(L{) and
A > 0 satisfying Ig«(v/A) + || fs/A|| < 1, it follows that

1] < inf{A > 0 To=(0/A) + I fs/All < 1} (4.12)
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Now suppose that the inequality above is strict. Then, clearly, there exists § > 0
such that Ie«(v) 4 || fs]| > 14 9. According to Proposition we can find w € L®
such that

I« (V) + fo(w) > 1+§/2.

In virtue of Theorem , there exists a sequence {w,} satisfying w > w, | 0 and
inf fi(w,) > fi(w) — 6/4. Thus we can write for every n > 1,

I (v) + fo(wy) > Ip-(v) + fs(w) —6/4
>1+6/4. (4.13)

For every non-negative function u € B(LY), we have that

[fo(w)] < [fo(u) + fo(w)] = [f(u)] < 1.

It follows that [[v]|e = || f,]| < 1, and hence Ig-(v) < 1. Define u(t) = (®*)' (¢, v(t))

and

v, (t) = max(0,v(t) — 1/n), (4.14)
un(t) = (%), (¢, va(t)). (4.15)

By v, 1 v, we have Ip«(vy,) > Ip+(v) — /8 for some ng > 1. Since v,, < oo and
Upy < bo=, it follows that & (¢, u,,(t)) < oo, for p-a.e. t € T. According to Lemma
m there exists a non-decreasing sequence {u,,;} C L? converging to u,,. Now
define u; = w; V Uy, ;. Clearly, u} 1 u,,. By the Dominated Convergence Theorem,

we have that

/T (£ (£) — (0]t — T ().

Thus, for some ny > 1, we get [, ul, vypodp — Ip(ul, ) > Ig-(vy,) — 0/8. Hence we

can write

ftit) = [ avdn = [ il v
T T
> I (u,) + L (vng) = 3/8
> Ip(u,) + I (v) — 6/4. (4.16)

In virtue of (4.13)) and (4.16)), we have

FQui,) = folun,) + folug,)
> LID(u;Ll) + LID*(U) - 6/4 + fs(wm)
>1+ Iq;(u;“)
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> |lup, lleo-

Then we get || f|| > 1, which contradicts || f|| = 1. Therefore, the inequality in (4.12))

is not strict. [l

Remark 4.18. With the sequences v,, and u, in and , respectively, we
avoided the case where u(t) = oo for t in a set of non-zero measure. The finiteness
of v does not provide that u(t) = (®*)"_(t,v(t)) < co. Defining the sets B = {t €
T : ®*(t,bp+(t)) < oo and (P*)' (¢,be+(t)) = oo} and F = {t € T : v(t) = be=(t)}.
we have u(t) = oo for t € BN F.



5 Compactness in E?

A non-empty collection F C L% is said to have equi-absolutely continuous

norms if
(lsin(l)sup{HuXBHq) cu € F and B € ¥ with u(B) <6} =0, (5.1a)
—

and, for every € > 0, there exists a measurable set A € ¥ with finite measure
p(A) < oo such that

suplluxralle < e. (5.1b)
ucF

We say that u € L? has absolutely continuous norm if {u} has equi-absolutely
continuous norms.

Clearly, if a collection F C L® has equi-absolutely continuous norms, then every
u € F will have absolutely continuous norm; a finite collection {u;}?", C L?® has
equi-absolutely continuous norms precisely when each function wu; has absolutely

continuous norm.

Remark 5.1. Expression (|5.1a]) is equivalent, for each ¢ > 0, to the existence of a
d > 0 such that ||luxgl|le < € for every w € F and B € ¥ with u(B) < 4. Since
luxslle < e implies Ip(2uyp) < 1, we get that the functions (¢, -) are finite-valued

for p-a.e. t € suppu, for each u € F. Thus we can assume that ® is finite-valued.

Proposition 5.2. A collection F C L® has equi-absolutely continuous norms if,

and only if, for every e > 0, there exists a non-negative function f € E® such that
sup|luxju>sylle < e (5.2)
ueF

Proof. Assume that is satisfied. Fix any € > 0. In virtue of f € E®, we have
that ®(t,[2f(t)]) is integrable. Thus we can find A € ¥ with u(A) < oo such that
Is(2fxra) < 1. Consequently, ||fxralle < e. In addition, there exists § > 0
such that Io(2fxp) < 1 for every B € ¥ with p(B) < 4. Then ||fxzplle < € for
every B € ¥ with u(B) < 4. Since € > 0 is arbitrary, we get that f has absolutely

continuous norm. For any measurable set F, we can write

luxelle < luxengu<slle + luxeagusrlle
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< I fxelle + luxqusslle- (5.3)

Since f has absolutely continuous norm, it follows that (5.3)) and (5.2)) imply (5.1)).

Conversely, assume that F has equi-absolutely continuous norms. Fix any ¢ > 0.
We can find a measurable set A. € ¥ with finite measure p(A.) < oo such that
sup,erlluxmaclle < 5. Let 6 € (0,2) be such that sup,z|luxglle < § for every
measurable set B € ¥ with u(B) < 4. Select a measurable set A € ¥ contained in
A, such that pu(A. \ A) < J and x4 € E®. Since ®(t,u) — oo as u — oo for p-a.e.
t € T, we can find A > 0 for which the set By, = {t € A : ®(¢t,\) > 1} satisfies
1(A\ By) < 2. Denote M = sup,cr||ulle and choose a > 0 such that 1AM < 2.
Hence, for all u € F, we have

1 1 5
IV anguzarlle < A uxanguzalle < —AM < 2.

Since g € (0,1), it follows that Is(Axan{ju/>a}) < g, and we can write

N >

> Io(AXanfuza}) = To(AXan{juzaynBy) = (AN {|u| > a} N By).
Therefore, for any u € F,
= 4.

(AN {Jul = a}) < (AN {Jul = a} N1 By) + u(A\ By) < 2 +

| S
N

From the way 0 was defined, we get sup,c 7||uxan{ju>a}lle < 5. Taking f = axa, it
follows that for all u € F,

luxguzplle < luxanguzaylle + [luxanalle + luxma.lle <e.

Hence (j5.2)) is satisfied. O

Corollary 5.3. A function u € L® has absolutely continuous norm if and only if
u e E2.

Lemma 5.4. In L® convergence in norm is stronger than convergence in measure.

Proof. Let {u,} be a sequence in L? converging in norm to u € L®. Take any
measurable set A € ¥ with finite measure p(A) < co. For arbitrary € > 0, denote
A, ={t € A:|uy(t) —u(t)| > e}. Since ®(t,u) — oo as u — oo for p-a.e. t € T, we
can find A > 0 for which the set By = {t € A: ®(t, \e) > 1} satisfies u(A\ By) < 5.
The convergence ||u, —ul|e — 0 yields Io(A(u, —u)) — 0. Thus, there exists ng > 1
such that for all n > ny,

> Io(Mun — u)xa) > In(Aexa,)

TR
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> Ip(Aexannsy) = (A, N By).
Consequently, for any n > ny,
p(An) < p(An N By) + (AN By) <

Therefore, u,, — u in measure. O

Theorem 5.5. A sequence {u,} in E* converges in norm to 0 if, and only if, it

converges in measure to 0 and F = {u,} has equi-absolutely continuous norms.

Proof. («<): For ¢ € (0,2), there exists a measurable set A. with finite mea-
sure p(A.) < oo such that sup,>|lusxra.lle < 36. Since AF = {Au,} is equi-
absolutely continuous for A > 0, we can find 6 > 0 such that sup,,>; lo(Aunx5) <
sup,>1 || Aunx5lle < 3¢, for every measurable set B with measure p(B) < 6. For
arbitrary subsequence {u,, } C {u,}, we can find another subsequence {v;} C {u,, }
converging p-a.e. to 0. Clearly, ®(¢, |\v;(t)]) — 0 for p-a.e. t € T. By Egoroft’s
Theorem, there exists a measurable set Bs; C A. such that u(A. \ Bs) < § and

O(t,|Av;(t)|) — 0 uniformly in Bs. Thus, for sufficiently large i > 1,

Ip(Mvixa.) = To(AvixB;) + Ta(Avixass) < €.

Consequently, Is(Avixa.) — 0 for every A > 0, and so ||v;xa.|le — 0. Hence, for
sufficiently large i > 1,

lville < |lvixmaclle + [lvixa.lle < e,

which shows that ||v;||l¢ — 0. Therefore, u,, — 0 in norm.

(=): Fix any € > 0. We can find ny > 1 such that ||u,|l¢ < € for every n > ny.
Since the finite collection {u, }°, has equi-absolutely continuous norms, there exist
0 > 0 such that

sup  |unxslle <e, forn=1,...,n, (5.4)
BeS,u(B)<s

and a measurable set A € ¥ with finite measure u(A) < oo satisfying
lunxmalle <, forn=1,...,no. (5.5)

Clearly, the inequalities in ((5.4)) and (/5.5]) hold for every n > ny. By the arbitrariness

of € > 0, the collection F = {u,} has equi-absolutely continuous norms. ]

Theorem 5.6. A collection F C E® is relatively compact if, and only if,
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(a) F has equi-absolutely continuous norms, and

(b) every sequence {u,} C F contains a subsequence {u,, } that converges in mea-

sure to some u € E®.

Proof. (<): In virtue of Theorem [5.5] the subsequence {u,,} in (b) also converges
in norm to u € E®. Thus F is relatively compact.

(=): Every sequence {u,} C F contains a subsequence {uy, } that converges in
norm to some u € E®. Since convergence in norm is stronger than convergence in
measure, (b) follows. Next we show (a). By the relative compactness of F, for any
e > 0, we can find {u;}"; C F such that for every u € F, there exists some u;,

1 <i < n, satisfying ||u — u;||l¢ < 5. We can find § > 0 for which

sup  |uixslle < E, for 1 <i<n, (5.6)
Bex u(B)<é 2

and a measurable set A € ¥ with finite measure u(A) < oo satisfying

luxralle <=, forl<i<n. (5.7)

[\

Given arbitrary v € F and FE € %, for some 1 < i < n, we can write

3

luxelle < luxelle + [|(u — u)xelle < uixells + 5

Then we obtain from ((5.6),

15
sup  |luxslle < sup  luixslle + 5 <e,
Bex,u(B)<s BeSu(B)<6 2

and from (5.7,
€
luxmalle < lluixryalle + 3 <e.

Hence the collection F has equi-absolutely continuous norms. O

Definition 5.7. Let & and ¥ be Musielak—Orlicz functions. If for each € > 0 there

exists a non-negative function f. € LY such that
U(t,u) < P(t,eu), forall u> f.(t), (5.8)

then ® is said to increase essentially more rapidly than ¥, which is denoted by
O> VU (or V<« P).

Let ®* and U* denote the complementary functions of ® and ¥, respectively. In
virtue of Lemma [2.5], we have that ® > W if, and only if, U* > &*.
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Proposition 5.8. Let ® and ¥ be Musielak—Orlicz functions such that ® increases
essentially more rapidly than V. Then every collection F C L* whose norms in L*®

are uniformly bounded has equi-absolutely continuous norms in LY.

Proof. Let M = sup,cr||u|lo0. For e € (0,2), denote v = 2M/e. Since U* increases
essentially more rapidly than ®*, for any n € (0,1) there exists a non-negative

function f, € L®", which can be assumed f, > ag-, such that
O*(t,u) < V(L Zu), forall u> fy(t).

For every function v € LY belonging to B(LY") := {v € LY : Iy-(v) < 1}, we have

[ ethewhais [ v <

{lvl>fn} {Ivol>fn}

Since f, € L®" and {t € T : ®*(t,|yv(t)]) > ®*(t, f,())} = {|yv| > f,} by f, > ae-,
it follows that the functions ®*(t, |yv(t)|), for v € B(LY"), have equi-absolutely

continuous integrals. Hence there exists 0 > 0 such that

)

sup / &* (¢, |yo(t) ) dp <

BeS u(B)<6

DO ™

and a measurable set A € ¥ with finite measure p(A) < oo satisfying

Y

/T RGO

DN ™

for all v € B(LY"). Letting E denote T\ A or any measurable set B € ¥ with
measure p(B) <, we have for all u € F, and v € B(LY"),

3

5 —

/ uvdu‘ < In(u/y) + To-(yoxs) < l[u/y]loo +
E

and then
luxellwo <e, forallueF.

Since € € (0,2) is arbitrary, the collection F has equi-absolutely continuous norms
in LY. O

Proposition 5.9. Let F C EY be a collection whose norms in LY are equi-absolutely
continuous. Then there exists a Musielak—Orlicz function ®, increasing essentially

more rapidly than U, for which the collection F has uniformly bounded norms in
L?.

Proof. In virtue of Proposition 5.2 we can find a sequence of positive functions
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{f.} € EY such that

sug[m(nux{|nu|>fn}) < 27" for every n > 1.
ue

Clearly, the sequence {f,} can be chosen non-decreasing. We define the Musielak—

Orlicz function

Z\Dtnu I ))X(fnt), ( ),

for every u > 0, and p-a.e. t € T. Taking arbitrary € > 0, and for some ng > 1 such

that nge > 2, we can write

O(t,cu) > V(t,noet — fr(t))X(fn(t),00) (M0EW)
> W(t,2u — fu(t)) 2 (t U)

for all u > f,,(t). Hence ® increases essentially more rapidly than W. Now, for every

u € F, we have

Z Ly ((nlul = fu)X{alul>1.7)

n=1

< Ty (nuxgnuspy) < 1
n=1

Therefore, the collection F C L® has uniformly bounded norms in L®. O]

Lemma 5.10. Let ® and ¥ be Musielak—Orlicz functions such that ® does not
increase essentially more rapidly than V. Then there exists a sequence of non-
negative simple functions {u,}, having pairwise disjoint supports, whose Luxemburg

norms in LY are equal to 1, and whose Luxemburgs norms in L* are uniformly

bounded.

Proof. For some g9 > 0, the non-negative, measurable function
f(t) =sup{u >0:W¥(t,u) > ®(t,cou)}

does not belong to LY. In virtue of Lemma and the Monotone Convergence

Theorem, for each m > 1, we can find a simple function v,, satisfying f > v,, > 0

and U (¢, v, (1)) > ®(t eovm(t)), such that Iy(vs,) > 2™ By Lemma [3.27 there

exist an increasing sequence {m,} of indices and a sequence {A,} of pairwise dis-

joint, measurable sets such that Iy(v,,,xa,) = 1. Denote u, = v, xa,. By the
1

construction above, we have [[u,[lg =1 and |[up[le < 2. O

Proposition 5.11. Let ® and ¥ be Musielak—Orlicz functions satisfying ® = W.
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Suppose that every collection F C L%, whose norms in LT are uniformly bounded,
has equi-absolutely continuous norms in LY. Then ® increases essentially more

rapidly than W.

Proof. Assume that ® does not increase essentially more rapidly than ¥. From
Lemma , we obtain a sequence of non-negative simple functions {u,}, having
pairwise disjoint supports, such that |u,|l¢ = 1 and ||u,|le < M, for some M > 0,
and all n > 1. Thus {u,} has equi-absolutely continuous norms in LY. For any

e € (0,3), there exists a ¢ > 0 satisfying

sup  ||lunxglle <e, foralln>1,
BeX,u(B)<o

and a measurable set A € ¥ with finite measure p(A) < oo such that
SupHunXT\AH‘If <€
n>1

In virtue of

[unxalle = [[unlle = llunxralle

>1—¢e>c¢, (5.9)

we have that pu(A Nsuppu,) > 0 for every n > 1. Since the functions u, have
pairwise disjoint supports, we can find some ny > 1 such that u(A Nsuppu,) <4
for all n > ng. Consequently, ||u,xallw < e for all n > ngy. This contradicts (5.9)).

Hence we have that ® increases essentially more rapidly than . ]

A classical result due to De La Vallée Poussin [12, Theorem II-22| states that,
when the measure p is finite, a necessary and sufficient condition for the uniform

integrability of a collection F C L' is the existence of a convex function ®: [0, c0) —
[0, 00) such that 2% — 50 as u — oo and supser Lo (f) < oo

u

In order to extend the Theorem of De La Vallée Poussin to arbitrary measures,

the assumption that # — 00 as u — oo is replaced by the following one: for any

M > 0, there exists a non-negative function fy; € L' such that

O(t,u)

> M, forall u> fu(t). (5.10)

Notice that the inclusion L® C L' is satisfied.

Proposition 5.12. A set F C L' is uniformly integrable if, and only if, there exists
a Musielak—Orlicz function ® for which (5.10)) is satisfied and sup,,cr Is(u) < 0.



6 Some geometric properties of L®

In this chapter we give necessary and sufficient conditions for the strict convexity
and smoothness of the Luxemburg and Orlicz norms, and for the uniform convexity

of the Orlicz norm. We assume that the measure p is non-atomic.

6.1 Strict convexity

A normed linear space (X, ||-||) is said to be strictly convex (or to have a strictly
convex norm) whenever, for any vectors x and y in X that are not parallel, we
have

[z +yll < =l + [yl

A point z in a convex set K C X is said to be an extreme point of K if x cannot be
expressed as a nontrivial convex combination of distinct points in K. In other words,
x is an extreme point of K if and only if y and z in K are such that z = (y + 2)/2,
then y = z = x. Let S(X) and B(X) denote the unit sphere and the closed unit
ball in X, respectively. It can be shown that X is strictly convex if and only if each
element of S(X) is an extreme point of B(X). Equivalently, X is strictly convex if
and only if for every x # y in X with ||z|| = |ly|]| = 1 we have ||(z +v)/2|| < 1.

We denote by SCq(t) the set of all points in the real line where ®(¢,-) is strict

convex.

6.1.1 Strict convexity of L®

Lemma 6.1. If the function u € L* satisfies Io(Mu) = oo for any X > 1, then there
exist non-increasing sequences of measurable sets {A;} and {B;}, converging to the
empty set, such that A; N\ B; = 0 and Is(Auxa,) = Is(Auxp,) = 0o for any A\ > 1,
foralli > 1.

Proof. We divide the proof into three cases.

Case 1. Suppose that there exists some A > 1 for which ®(¢, [Au(t)|) < oo for
p-a.e. t € T. Let {)\,} be a decreasing sequence in (1, \) such that \, | 1. Since
p is o-finite, we can find a non-decreasing sequence {7} of measurable sets, with
finite measure, such that 7 = |J,_, T),. Define the measurable sets E,, = {t € T), :
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O(t, | N\yu(t)]) < n} for all n > 1. Clearly, £, T T. In virtue of Is(A\u) = o0
for every n > 1, we can find n; > 1 such that F} = E,, satisfies the inequality
2 < Io(Ayuxrm ) < nip(T,,) < co. Obviously, Lp()\nuXT\Fnl) = oo for any n > n;.
Similarly, we can find ny > ny such that defining F» = E,, N (T \ F1) we get
FinF, =0 and 2 < Io(Anyuxr) < nop(Th,) < oo. Thus, Io(Auxr\(rum)) = 00
for any n > ny. Repeating these steps we obtain a sequence {F};} of pairwise
disjoint sets such that 2 < Iy(A,uxr;) < oo for all j > 1. By E, 1 T, we have that
T = Uj; F;. Since the measure p is non-atomic, there exist disjoint, measurable
sets G and H;, whose union is F; = G; U Hj, such that

1
I@(AnquGj) = I@(AnquHj) = ELP(/\HJUXFJ) > 1

Now, for each i > 1, define the disjoint sets

A4=Ja,  B=JH:
j=i j=i
Taking arbitrary A > 1 and ¢ > 1, we can find k£ > ¢ such that A > X, , and hence
Ip(Auxa,) = Z Is(Auxg;) > Z Ip(Anjuxa;) = 0.
j=i j=k

Similarly, we obtain that Is(Auyp,) = oo for any A > 1, and all ¢ > 1.

Case 2. Suppose that for some measurable set F, with measure u(E) > 0, we
have that |u(t)| = bs(t) for all t € E. Let {A;} and {B;} be any non-increasing
sequences of measurable sets, converging to the empty set, such that A, N B; = 0
and satisfying 0 < p(A4;) < p(F) and 0 < p(B;) < p(E). Clearly, for all i > 1, we
have that Io(Auxa,) = lo(Auxp,) = oo for any A > 1.

Case 3. Assume that |u| < be, and for any A > 1, we have that [\u(t)| > be(t) for
t in a set of positive measure. Let {)\,} be a decreasing sequence in (1, 00) satisfying

An | 1. For every n > 1, denote
F,={teT: | \u(t)] > be(t)}.

Clearly, F,, | (). For each n > 1, take disjoint, measurable sets G, and H,,, whose
union is F, \ F,,4+1 = G, U H,, and such that x(G,) > 0 and p(H,) > 0 if p(F, \
Foi1) >0, or u(G,) = p(H,) = 0if u(F, \ F.y1) = 0. Now we define the disjoint
sets A; = J,—, G, and B; = |J,—_; H,. Thus, for any i > 1, it follows that (A4;) >0
and p(B;) > 0. For arbitrary A > 1 and ¢ > 1, we can find k > i such that A > A,
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and hence . -
Is(Auxa,) = Z Is(Auxe,) > ZLp(Anuxgn) = 0.
n=t n=~k
Similarly, we obtain that Is(Auyp,) = oo for any A > 1, and all ¢ > 1. ]

Lemma 6.2. If the function u € S(L®) satisfies Is(Au) = oo for all X > 1, then
there exist disjoint, measurable sets A and B such that T = AU B and

luxalle = [luxslle = 1.

Proof. In virtue of Lemma [6.1) we can find non-increasing sequences of measur-
able sets {A;} and {B;}, converging to the empty set, such that 4; N B; = () and
Is(Auxa,) = Is(Auxp,) = oo for any A > 1, for all i > 1. Denote A = A; and
B =T\ A;. We have that Is(uxa) < Ip(u) <1 and Ip(uxp) < Ip(u) < 1. More-
over, it is clear that Is(Auxa) = oo and Is(Auyxp) = oo for all A > 1. Therefore, it
follows that ||uxalle = [[uxs|le = 1. O

Lemma 6.3. If ® is not finite-valued, then L® is not strictly convez.

Proof. Let {e,} be a positive sequence satisfying ¢, | 0. Denote £ = {t € T :
be(t) > 0}. For each n > 1, we can find pairwise disjoint, measurable sets A, C E,

with positive measure, such that
Ip((bo — £n)xa,) < 27"V min(1, Ip(ba)).

Denoting u = > (bg — €,)xa4,, we have

1
5

Is(u) = ZLl)((bCD — En)X4,) <

n=1

For any « € (0,1), there exists a sufficiently large n > 1 such that (be(t) —e,)/a >
by (t) for ¢t in a set of non-zero measure. Hence Ig(u/a) = oo for any a € (0, 1).
Thus |lullso = 1. Repeating the same steps, we can find v € (L®), whose support
is disjoint from the support of u, such that Is(v) < 1 and Is(v/e) = oo for any
a € (0,1). From the way u and v was constructed, we get that ||u + v|l¢0 = 1 and

|lu — v||go = 1. Thus u € S(L?) is not and extreme point of B(L?®). O

Lemma 6.4. Let ® be a continuous Musielak—Orlicz function. If the function u €
S(L?®) satisfies Is(u) < 1, then there exist functions v,w € S(L®) with v # w such
that u = 3(v + w).
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Proof. From the continuity of ® and ||ulleo = inf{a > 0 : Is(u/a) < 1}, it follows
that Ip(Au) = oo for any A > 1. We can find € > 0 and a measurable set E such
that 0 < Is((1 + e)uxg) < 2(1 — Ip(u)). Since the measure p is non-atomic, there

exist disjoint, measurable sets A and B, whose union is £ = AU B, such that

1
Is((1+e)uxa) = Is((1 + e)uxp) = §[¢((1 +e)uxe) < (1 — Is(u)).
Define the functions

v=(14+¢c)uxa+ (1 —e)uxp +uxne
w=(1—-¢)uxa+ (1+¢e)uxp+ uxme.

Clearly, v # w and u = 1(v + w). Hence we get

Io(v) = Io((1 + €)uxa) + Lo ((1 — e)uxi) + lo(uxr\ k)
S [q;((l + 5)UXA) + Iq;(u) S 1.

Similarly, Is(w) < 1. Taking arbitrary A > 1, we have that Is(A\v) > Io(Auxmg) =
oo. Therefore, v, w € S(L?®). O

Theorem 6.5. Let ® be a continuous Musielak—Orlicz function. Necessary and

sufficient conditions for u € S(L®) be an extreme point of B(L*) are that
(a) Ip(u) =1, and
(b) |u(t)| € SCo(t) for p-a.e. t € T.

Proof. Necessity. The necessity of (a) follows from Lemmal6.4, Suppose that (b) is
not satisfied. Thus we have that the set

Hy={teT:|u(t)] =0 and as(t) > 0}
has non-zero measure, or, for some € > 0, the set
Hy={teT:|u(t)| >0 and 20(t, |u(t)|) = (¢, |(1 + e)u(t)|) + ®(t, [(1 — e)u(t)|)}
has non-zero measure. If u(H;) > 0, we denote

U= o XH, + UXT\H,

W= —aoXmH, + UXT\H;-

Clearly, v # w and u = (v 4 w). Since Is(v) = Ip(w) = 1, we have |[v]joo =
®

|w]|eo = 1. Thus u € S(L*) is not and extreme point of B(L?). Assume u(Hy) > 0.
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Then we can find measurable functions a,b: Hy — [0, 00) such that ®(¢,u) = a(t)u+
b(t) for all t € [|(1 + &)u(t)],|(1 — e)u(t)|], and for u-a.e. t € Hy. Let E and F be
disjoint, measurable sets such that H, = EUF and [, a(t)|u(t)|dp = [, a(t)|u(t)|dp.
Define

v=(1+¢c)uxe + (1 —e)uxr + uxr\n,
w= (1 —e)uxp + (1 +e)uxr + uxr m,-

These functions satisfy v # w and u = %(v + w). Moreover, we can write

Io(v) = Io((1+ €)uxs) + Lo((1 = €)uxr) + Lo(uxrm)
= [ a1+ o)+ (o)
. /F[a(t)|(1 — SYu(t)] + b(t)]dp + To(uxrm,)
:/E[a(t)\u(t)\ + b(t)]dp
+ /F la() u(t)] + b(E)dp + Lo (uxr i)

= Ip(uxg) + lo(uxr) + lo(uxr\u,)
= I@(U) = 1,

from which we have that ||v|e = 1. Analogously, it follows that |w||s = 1. Hence
u € S(L?) is not an extreme point of B(L®). Therefore, |u(t)| € SCy(t) for p-a.c.
tel.

Sufficiency. Assume that (a) and (b) are satisfied but u is not an extreme point
of B(L®). We can find v,w € S(L?®) such that v # w and u = (v + w). Then we
have

1= To(u) < 3 (Ia0) + Io(w)) < 1
Hence we obtain the equality 2®(¢,z + y) = ®(¢,x) + 2®(¢,y) for every z,y €
[min(|v(t)], |w(t)]), max(|v(t)|, Jw(t)|)], for u-a.e. t € T'. Thus (b) is not satisfied, a
contradiction. Therefore, u € S(L%) is an extreme point of B(L?). O

Theorem 6.6. A Musielak-Orlicz space L is strictly convex if, and only if,
(a) ® satisfies the Ay-condition, and
(b) ®(t,-) is strictly convex for p-a.e. t € T.

Proof. In Lemma , ux 4 is not an extreme point of B(L?), since ||uxa+uxz| =1
and [|[uxa — uxg| = 1. Thus ® satisfies the Ay-condition, and for every u € S(L?)
we have that Io(u) = 1. According to Lemma [6.3| @ is finite-valued. By Theorem
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[6.5] we have that ®(¢,-) is strictly convex for p-a.e. t € T. Conversely, if (a) and (b)
are satisfied, then Theorem implies that L® is strictly convex. O

6.1.2 Strict convexity of LY

Lemma 6.7. Let u € L®. If K(u) consists of one element in (0,00), then ||ullso <
Jrluldedy.

Proof. Let K(u) = {ko}. From the proof of Lemma we have, for any ks, k1 > 0,

E{th%wﬂzki&f%k%@ﬁuwm@my—U+£ﬁ1+ﬂdh@) (6.1)

Since ko = k;*, it follows that Ig-(®, (t, [ku(t)])) > 1 whenever k > ko. From [6.1]

we have +(1 + Ip(ku)) > %(1 + Ip(kou)) = ||ul|e,o for any k > ko. Then we can

write

Ot |ku(t
Lw%w:/ 1m—%%memw
supp u

.1
= klg]glo E(l + Igp(ku))
1
> —(1 + Lp(kﬁou))
ko

= [lulle.o-

Hence the conclusion of the lemma follows. ]

Theorem 6.8. Necessary and sufficient conditions for u € S(L§) be an extreme
point of B(LY) are that

(a) the set K(u) consists of one element in (0,00), and
(b) |ku(t)| € SCq(t) for p-a.e. t € T, where k € K(u).

Proof. Necessity. Let u € S(LZ) be an extreme point of B(LJ) satisfying K (u) =
0. According to Lemma [3.19, we have that |julleg = [,|u|ldedp. Take disjoint,
measurable sets 77 and T such that 7= T, UT, and le luldedp = fT2 |u|dpdp. For

any ¢ € (0,1), we define the functions

v=(14¢8)uxn + (1 —¢e)uxr,
w = (1 - €)UXT1 + (1 + E)UXTT

Clearly, v # w and u = (v 4+ w). Hence we can write

Jolloo < | foldade
T
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(14 &)uldedp+ [ [(1 = e)uldedp
T1 T2

/M%W+/M%w
/|u|dq>du = 1.

Similarly, we get |Jw||eo < 1. Thus u € S(LJ) is not and extreme point of B(LJ).
Hence K (u) # 0.
Fixing any k € K(u), suppose that |ku(t)] ¢ SCe(t) for ¢ in a set of non-zero

measure. Thus we have that the set
Hy={teT:|u(t)=0and ag(t) > 0}
has non-zero measure, or, for some ¢ > 0, the set
Hy={teT:|u(t)| >0 and 20(t, |u(t)|) = (¢, |(1 + e)u(t)|) + ®(t, [(1 —e)u(t)|)}

has non-zero measure. If u(H;) > 0, we denote

v = 2]{:CL<I>XH1 + uXT\m,
1
W= —5rGeXH +uxT\H, -

Clearly, v # w and u = (v + w). We have

[v]le0 < (1 + Lo (kv))
(1 + [@(ICUXT\HID

(14 Io(ku)) = [lulloo = 1.

wl»—?rl»—t?v —

Similarly, ||w||¢o < 1. Thus u € S(L¥) is not and extreme point of B(LJ).
Assuming that pu(Hy) > 0, we can find measurable functions a,b: Hy — [0, 00)

such that ®(t,u) = a(t)u + b(t) for all t € [|k(1 + e)u(t)], |k(1 — €)ku(t)|], and for

p-a.e. t € Hy. Let E' and F' be disjoint, measurable sets such that H, = E' U F' and

Jpa®)|ut)|dp = [ a(t)u(t)|dp. Define

v=(1+¢)uxg + (1 — e)uxr + uxr\m,
w = (1—=¢)uxg + (1 +e)uxr + uxr u,-
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These functions satisfy v # w and u = (v + w). In virtue of

b%@+@w@+@@ﬂ—@wm=prwrmmwuumw
+:mewu—fwun+mwwu
Z'/;kdtﬂku(®|+-bﬁﬂdu

3Awmmwmwmm¢

= Ip(kuxg) + Is(kuxr),

we can write

—_

[0]le0 < (1 + Lo (kv))

—_

= —[1+ Io((1 4+ e)kuxr) + lo((1 — e)kuxr) + lo(kuxr (sur)]

1+ Lo (kuxg) + lo(kuxr) + lo(kuxr\ (zur))]

el e N

[+ Lo(ku)] = [lufloo = 1.

Analogously, we have that ||w|/s < 1. Hence u € S(L¥) is not an extreme point of
B(L®), a contradiction. Therefore, |ku(t)| € SCy(t) for p-a.e. t € T.
Now, suppose that kq, ko € K(u) satisfy ki # ky. Denoting k = 2k1ko/ (k1 + ko),

we can write

k1+k2_ kg k'l
= 1 Is(k Is(k
lullag + lulloo = =5 (14 g Talkyu) + T (ko)
k’l—f—k’g_ k?2 kl
> 1+1 ( ke 2 )]
e R T
/i)l—i‘kg' 2l€1k2
= 141
hiky LT q’<k1+k2“>]
1
= 2. (1+ Lo (k) = 2ulloo,

which implies that [[ul|¢o = (1 + Ip(ku)) and

ko
ky + ko

ki

O(t, |ku(t)]) = ki + ko

O(t, [kau(t)]).

O(t, |kyu(t)]) +

Since |kju(t)| # |kou(t)| for p-a.e. t € supp u, we have that |ku(t)| ¢ SCe for p-a.c.
t € suppu. This provides a contradiction. Thus K (u) is composed by one element
in (0, 00).

Sufficiency. We shall prove that for u,v,w € S(L{) such that u = (v + w) we
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have that at least one of the sets K(v) or K (w) is nonempty. Suppose that K(v) =0
and K(w) = (). By Lemma we can write

1=nav+ww@w</@w+mm%mﬁ
T

< %/Iv\d¢du+%/|w|d<pdu
T T

=1vlle0 + 3lwlleo =1,

which provides an absurd. Thus K(v) # 0 or K(w) # (. Now we will show that
the sets K (v) and K (w) are non-empty. Assume that K (v) # 0 and K(w) = ). For
a, € (0,1), we denote

Ve = (1 — a)v + au,
wg = (1 = B)u+ Pw.

Suppose that K (vs,) = 0 for some ag € (0,1). From v = 2u — w, we have

Vap = (1 —ap)(2u —w) + apu = (2 — ap)u — (1 — a)w

and hence u = 5=~vq, + 3 - —o2w. Then, by Lemma we obtain

1= | dad
nwm</2 o —
<

ol dad 0 dod
_Q_QKAwO|¢u+2_amAm|¢u

1 —
=1
2_a0\|w\|<1>,0 )

= 5= lvuslloa+

which shows that the assumption that K (vs,) = ) cannot be satisfied. Therefore,
K(vy) # 0 for all @ € (0,1). Now assume that there exists Sy € (0,1) for which
K (wg,) # 0. Then we can find oy € (0, 1) satisfying u = 3(wg, + va,). In addition,
there exist kg,, ko, > 1 such that

1 1
Hw/jo“‘b,o = k_<1 + [’i’(kﬁowﬁo))? HUOé1“¢’,0 = L (1 + I‘P(kalvoq))'

0 al

Hence we can write

9=29 < ;O I (# ))
HUH@Q - kﬁokal e kﬁo + koqu

— % [1 + Iy (hkﬁowﬁo #kmvm)]
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< kﬁo + kal kal kﬁo

1 Is(k + ———— I3 (ka,Va,
N kﬁokal [ kﬁo + kal (I)( ﬁowﬁ’o) kﬂo + kal CD( ! )
1 1
- k‘_(l + Iq)(kﬂowﬁo)) + /{3_(1 + ]‘D(kmz}al))
Bo a1

- Hwﬂonb,O + HUOq”‘l%U =2.

Therefore, denoting k = 2kg,ka, /(kg, + ko, ), it follows that K (u) = {k} and

ka

k
- (I)(tv ‘kﬁowﬁo (t)D + L Bok (I)(tv |kalval (t)‘)
a1

D¢, |ku(t)|) =
(b u(t)) = et —

Since |ku(t)] € SCo(t) for p-ae. t € T, we get the equalities |ku| = |kgwg,| =
|kayVay |- From wg,,va,,u € S(LY), we have k = kg, = kq,, and hence |u| =
|wg,| = |Va, |- This contradicts |wg,| # |va,| (in fact, |wg, ()] # |va, (t)] for u-a.e.
t € supu). Thus K(wg) = 0 for all # € (0,1). And, in virtue of Lemma [3.19]
|wslleo = [plws|dedp for all 3 € (0,1). By

lws — wlloo = [I(1 = B)u+ fw — ulleo < Bllulleo + Bllwlleo,

we have that limgo|lws — ullep = 0, and hence limgo||ws|lo0 = ||u]|eo. Thus we

get the following absurd:

U = lim||w =lim [ |wgldedp > [ |u|dedy > ||ulle.o.
fulloo = Timlhwslao =t [ wsldadi> | Juldadi > Jullag

Therefore, K(v) # () and K(w) # 0. Now, repeating the same steps as given
above, with v and w in the place of of v,, and wg,, respectively, we obtain that

|u| = |v| = |w|. Consequently, u is an extreme point of B(Lg). O
Corollary 6.9. L¢ is strictly convez if, and only if,
(a) ®*(t,bex(t)) = o0 for p-a.e. t € T, and

(b) ®(t,-) is strictly convez for p-a.e. t € T.

6.2 Smoothness

Let (X, ||-]|]) be a normed linear space. For any x € X \ {0}, a functional f € X*
satisfying ||f|| = 1 and f(x) = |[|z]| is said to be a support functional at x.
The Hahn—Banach Theorem ensures the existence of at least one support functional
functional. If z € X \ {0} admits a unique support functional, then x is said to
be a smooth point. We say that X is smooth (or has smooth norm) if there

exists exactly one support functional at each z € X \ {0}. Clearly, it is enough to
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check only norm one vectors  when testing for smoothness. It can be verified that
a normed linear space is smooth if and only if its norm has directional derivatives
in each direction.

Let SMg(t) denote the set of all points in the real line where ®(¢, -) has continuous
derivative. The set of all support functionals at u € L® is denoted by Grad(u), and

RGrad(u) denotes the set of all order continuous functionals in Grad(u).

6.2.1 Smoothness of L®

Lemma 6.10. If u € S(L*) and Is(\u) < oo for some A > 1, then every f €

Grad(u) is order continuous.

Proof. Let f € Grad(u). Since |u| € S(L®) and |f| € S((L*)*), we can write

Frut) + @) < fuh) + 7 (w?) + f )+ f7(uh)
= [fl(lul) <1

In virtue of

fran) +f )= ffu) = f(u)=flu)=1
it follows that f*(u~) = 0 and f~(u™) = 0. Thus, without loss of generality, we
can assume that v > 0 and f > 0. Suppose fs # 0. Fix a A\g > 1 such that
Ip(Aou) < oo. According to (4.3), for any 0 < ¢ < || fsl|o(1 — 1/Xo), we can find a

sequence 0 | u, < w such that fi(u) < inf f(u,) + €. Since f. is order continuous,
we have f.(u,) ] 0, and then

fs(u) <inf f(u,) + e <inf fi(u,) + & < || f5]| inf||u,||o + €.

Since we can find ng > 1 such that Ig(Au,) < 1 for all n > ng, we obtain inf||u,||e <

1/Xo < 1. Hence we can write

[fello + 1 fsllo = 1fllo = f(u) = fe(w) + fi(u)
< [l fello + L fsllo infflunlle +
<[ fello + lfsllo(1/A0) + Nl fsllo(L = 1/A0)
= [ fello + 1 fslo;

which provides an absurd. Therefore, f; = 0. n

Lemma 6.11. Let ® be a finite-valued Musielak—Orlicz function. Assume that the
function u € L* satisfies Is(Au/||ulls) < oo for some A > 1. Then f, € RGrad(u)
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if, and only if, v € L*" can be written as

oy o)
O Tl Tullywds 62

where w is a measurable function such that w(t) € 0D (t,|u(t)|/||ulls) for p-a.e.
t € T. Consequently, RGrad(u) # .

Proof. By the assumptions, we have that Is(u/||ulle) = 1. Assume that f, €
Grad(u) for some v € L?". We will show that K (v) # (. Supposing that K (v) = (),

we have ||v|le«0 = [ ba|v]dp = 1. In virtue of

V= [ @/lle)eds < [ (ul/ello)leldn < [ bolold =1,

it follows that |u(t)|/||ulle = be(t) for p-a.e. t € suppwv. This contradicts the
assumption that Ip(Au/||ulle) < oo for some A > 1. Thus we can find 0 < k < o0
such that |[v]|lg«o = +(1 4 Is-(kv)) = 1. We can write

|4 Tge (ko) = k = /T(u/||u||q>)k:vd,u < Io(u/|[ulla) + To-(kv) = 1 + Ton (o).

Then we obtain that sgnv = sgnu and |kv(t)| € 0P(¢, |u(t)|/||u||le) for p-a.e. t € T.

Denoting w = |kv|, we get

1

fo(z) = E/ z([sgn u]w)dp, for every z € L®.
T

Since f,(u) = ||ulle,0, it follows that k& = [,,(Ju|/||ul|s)wdp. Therefore, v is expressed
in the form given in (6.2)).

Conversely, it is clear that the function v in belongs to Grad(u) if we show
that v € L?". Take A > 1 for which Iy(\u/||ul|s) < co. In virtue of the inequalities

(where w is a variable)

Q*(t, ' (t,u)) < O(t,u) + D (¢, P, (t,u)) = ud’ (¢, u)
1 Au

1
< — ! < —
=3—1/ P (t,x)dr < A—lq)(t’)\u)’

we can conclude that Ip-(w) < co. Hence v € L*". ]
Theorem 6.12. A function u € S(L®) is a smooth point if, and only if,
(a) Ip(Au) < oo for some A > 1, and

(b) u(t) € SMg(t) for p-a.e. t € T
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Proof. Sufficiency. In virtue of Lemma m (a) implies that every f € Grad(u)
is order continuous, i.e., f = f, for some v € L*". By Lemma and (b), the
functional f, € Grad(u) is uniquely written in the form given in (6.2)).

Necessity. Suppose that u does not satisfies (a). According to Lemma ,
there exist disjoint, measurable sets A and B such that T'= AU B and |luxalle =
|luxglle = 1. Denote u; = uyxa and us = uxp. Let f; € Grad(u;) and fy €
Grad(ug), i.e.,

Ifillo = fi(ui) = fluille =1, fori=1,2.

Hence we can write

L+ fi(uz) = fi(ur £ uz) <[ fillollur £ uslle <1,

which implies that fi(us) = 0. Analogously, it follows that fo(u;) = 0. Therefore,
f1 # fo. We also have

fZ(U) = fz(U:[ + UQ) = fz(ul) = 1, fOI' 7 = 1,2

Consequently, fi, fo € Grad(u), which means that u is not a smooth point.

Now assume that @ satisfies (a) but does not satisfies (b). From Lemma [6.11]
RGrad(u) is not empty, and every functional f, € Grad(u) is expressed as in (6.2)).
Since (b) is not satisfied, Grad(u) is not composed by a unique element. Therefore,

(b) is a necessary condition for the smoothness of u. ]
Corollary 6.13. L® is smooth if, and only if,

(a) ® satisfies the Ay-condition, and

(b) ®(t,-) is continuously differentiable for p-a.e. t € T

6.2.2 Smoothness of L§

Lemma 6.14. Letu € S(L). If K(u) # 0, then necessary and sufficient conditions
for f = f, + fs € Grad(u) are that, for any k € K(u),

(i) Lo-(v) + |l fsll = 1,
(i) [[fll = fs(ku), and
(iii) sgnv(t) =sgnu(t) and |v(t)| € 0D(¢, |ku(t)|) for p-a.e. t € T.

Proof. Suppose that (i)—(iii) are satisfied. By (iii), for any k£ € K (u), we have that
Jp kuvdp = Ig(ku) 4 Ig+(v). Then we can write

Flu) = 1 (Fulku) + £ (k)
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- %(Lp(k‘u) + 1o (v) + fs(ku))
_ %%(m + o () + || £])

1
= E(l + Ip(ku)) = 1.

From (i), we have that || f|| < 1, and hence ||f|| = 1 since f(u) = 1. Therefore, f
is a support functional of u. Conversely, let us assume that f = f, + f; € Grad(u).
For any k € K(u), it follows that f,(u) + fs(u) = £ (1 + Is(ku)). Hence we have

1= fo(ku) — Io(ku) + fi(ku)
S LI)*(U> + fs(ku>
< o (v) + I < 1.

Thus Ip«(v) + || fsll = 1, || fsll = fs(ku), and f,(ku) = Ip-(v) + Ip(ku), from which
we have that sgnv(t) = sgnu(t) and |v(t)| € 0D(¢,|ku(t)|) for p-a.e. t € T. O
Lemma 6.15. If the functionu € L* satisfies Io(Mu) = oo for any X > 1, then there
exist two purely singular functionals s; # sy in (L)*, with norms ||s1|| = ||s2|| = 1,
and such that si(u) = sa(u) = 1.

Proof. Without loss of generality, we suppose that u > 0. According to Lemma [6.1]
there exist non-increasing sequences of measurable sets {A;} and {B;}, converging
to the empty set, such that A; N B; = () and Is(Auxa,) = Io(Auxp,) = oo for any
A>1,and all 7 > 1. Let us denote the subspaces

& ={we L* :suppw € T\ A; for some i > 1},
Ey={w e L* : suppw € T'\ B; for some i > 1}.

Since Ip(Auxa,) = Is(Auxp,) = oo for any A > 1, it follows that [|uyxa,|le > 1.

Hence we can write
inf{|lu —wlle :we &} = %E{HUXAZ.H@ > 1.

Thus u does not belong to the closure of £ . Similarly u is not in the closure of &;.

By the Hahn—Banach Theorem, we can find functionals sy, sy € (LY)*, with norms

|s1]| = ||s2]| = 1, and satisfying s;(u) = sa(u) =1 and
s1(w) =0, for every w € &,
so(w) =0, for every w € &,.

Since B; C T \ A;, we have that s;(uyxp,) = 0 and sy(uxp,) = 1. Hence s; # ss.
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Clearly, the positive and negative parts of s; vanish on & . For any non-negative

w € L®, we have

((s1)2)e(w) = inf{sup(s1)=(wn) : 0 < wy T w}

< sgg(sl)i(wa\Ai) =0.

Therefore, s; is purely singular. Analogously, we have that s, is purely singular. [J

Lemma 6.16. Ifu € S(LY) is a smooth point and K (u) # 0, then any f € Grad(u)

18 order continuous.

Proof. Suppose that every f = f, + f; € Grad(u) has non-zero singular component
fs # 0. According to Lemmal6.14] we have that Ip-(v)+ || fs|| = 1 and || fs|| = fs(kuw)
for k € K(u). Since || f|| = sup{|fs(u)| : v € L?}, it follows that fg(u) = 1/k > 0.
Hence u/0p(u) = ku € L® and Is(Au/fg(u)) = oo for any A > 1. In virtue of
Lemma we can find two purely singular functionals s; # sy in (L3)*, with

norms ||s1|| = ||s2|| = 1, and such that s;(u) = s2(u) = 1. Define the functionals

fi:fv+||fs||si’ for i =1,2,

which satisfy f; # fs. For any A > 0, we can write

Lo+ (v/X) + [[(fi)s/All = To (0/X) + [l fsllllsi/All = To= (v/X) + [ fs/All = 1.

This provides that ||f;|| = 1, for i = 1,2. From s;(u) = 0g(u) > fs(u)/] f5]|, we can

write

fiw) = folu) + | fsllsi(u) = fo(w) + fs(u) = f(u) = [[ulleo = 1.

Since |fi(w)| < ||fillllw|le0 = ||u]|eo = 1, we obtain that f;(u) = ||ulleo = 1. Then
f1, f2 € Grad(u), and hence u is not a smooth point. Therefore, every f € Grad(u)

is order continuous. [
Theorem 6.17. LY is smooth if, and only if,

(a) ®*(t,bg«(t)) = o0 for p-a.e. t €T,

(b) @ satisfies the Ag-condition,

(c) ®(t,-) is continuously differentiable for p-a.e. t € T.

Proof. Sufficiency. Let u € S(LY). For any k> 0 and A > 1, we can write

Q*(t, @ (t, ku)) < O(t, ku) + ©*(¢, ¥, (¢, ku)) = kud’, (¢, ku)
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1 Aku

1
< — P (t,x)dr < ——P(t, \kuw).
A—1 Ji

A—1
From (b), we obtain Ig-(®’, (¢, |ku(t)|)) < oo, for any k£ > 0. Since ®*(t, bg-(t)) = oo
and @' (t,u) = do(t) = be-(t) as u — oo, it follows that Io« (P, (¢, |ku(t)])) — oo as
k — oo. The continuity of ' (¢,-) yields the uniqueness of a kg € (0, c0) such that
I (9 (L, |kou(t)])) = 1. Clearly, ky € K(u). In virtue of Lemma there exist
only one support functional f, € Grad(u), where v(t) = sgnu(t) - ®' (¢, |[kou(t)]).
Necessity. Denote E' = {t € T : ®*(t,be+(t)) < co} and suppose that u(E) > 0.
Let 0 #u € L® be such that suppu C E. Choose disjoint, measurable sets A, B C

E, with non-zero measure, and such that

N | —

1
Ig«(bpxa) < > and I (ba-xp) <
Hence, by Lemma [3.18, we obtain that [|uxalle,0 = [;|uxalbe-dp. Denote

v1 = (sgnu)bes X a,

Vo = (sgnu)bes x4 + bo X B-

Clearly, ||v1]le = ||v2]]e = 1. In addition, we have
utwa) = [ endn = [ fuxalbo-d = o
T T

Consequently, fo,, fu, € Grad(uya). Therefore, if LY is smooth, we have ®* (¢, bg~(t))
oo for p-a.e. t € T.

In order to show that ® satisfies the As-condition, we use the Bishop—Phelps
Theorem [50, Theorem 3.19|, which asserts that, in a Banach space (X, |-||), the
set of all functionals x* € X* which satisfy z*(x) = ||z*|| for some z € X with
||z|| = 1, is norm dense in X*. Supposing that ® does not satisfy the Ay-condition,
we have that (L?) # {0}. Let G denote the set composed by every functional
[ € (L3)*, for which there exits some u € S(Lg) satisfying f(u) = ||f||. If every
functional in G is order continuous, then the closure of G will be contained in L®".
Since (LE)* = L* @ (L®), with (L) # {0}, we obtain that the closure of G
is not (L&)*. This violates the Bishop—Phelps Theorem. Therefore, there exists
some u € S(L¥) having a support functional f = f, + f; € Grad(u), whose singular
component f; is non-zero. Since ®*(t, bg+(t)) = oo for p-a.e. t € T, we get K (u) # 0.
In virtue of Lemma m, u is not a smooth point. Thus, if LY is smooth, we have
that ® satisfies the As-condition.

Suppose that ®(¢,-) is not continuously differentiable for p-a.e. t € T'. For any
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e > 0, we define the function
us(t) = inf{u > 0: [®(t,u+¢e) — ®(t,u)]/e — [P(t,u) — P(t,(u—€)4)]/e > €},

where we use the convention inf{()} = oco. We verify that . is measurable. For

every rational number r > 0, define the measurable sets
A, ={teT [, r+e)—0(t,r)]/e—[®(t,r)— 2t (r—e)y)]/e > e}

By the continuity of ®(¢,-), we have that u. = inf{rya., + coxma., : r rational}
for p-a.e. t € T'. Thus u. is measurable. Letting ¢ | 0, we have that u. converges
p-a.e. to

u(t) = inf{u > 0: " (t,u) < P’ (t,u)}.

From the assumption that ®(¢,-) is not continuously differentiable for p-a.e. t € T
it follows that the set H = {t € T': u(t) < oo} has non-zero measure. Hence we can

find a measurable set A C H, with measure p(A) > 0, such that
Ip(uxa) <oo  and I~ (P) (¢, u(t)xa(t))) <1.

Since the measure p is non-atomic, there exist disjoint, measurable sets E and F',

with non-zero measure, satisfying A = E U F and

/E B (@' (£, u(t))) — (@ (t, u(t)))]dp = / (D (@, (1, u(t))) — (' (¢, u(t))))dp,

F

from which we can write

Lo (@, (6, u(t) x5 (1)) + Lo (¥ (¢, u(t)xr (1))
— Ly (@, (1, u(t) x5 (8))) + Lo (@ (1, u(t)xr(1)) = ¢ < L.

Let {T;} be an increasing sequence of measurable sets satisfying 0 < p(7;) < oo and
w(T\ U=, T;) = 0, and such that

ess sup;ep, ®(t,u) < oo,

for every u > 0, and every n > 1. We can find a sufficiently large ny > 1 satisfying
Iy« (P, (t,m0X1,\1)) > 1. Let B be a measurable subset of T, \ A such that
Is-(® (t,noxB)) = 1 — c. We define the functions

oy = ¥ (0 u(t)xe(t)) + B (1 ut) e (1) + ) (1 moxs (1),
vy = O (t,u(t)xp(t)) + Pt u(t)xr(t) + ¥, (£, noxs(t))-
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In virtue of Ig«(v1) = Ip«(vg) = 1, we have that ||v1]e« = |[v2|le+ = 1. Now we

define

U =uxa+ noxs-

Clearly, v; € 0®(t,u(t)). Then we can write
[@llwo < In(@ + 1 = I(@) + Io (v3) = / Tuids = f.,(@).
T

Since | fo, (@) < ||villo||ulloo = ||@]e,0, it follows that f,, (4) = ||u||e,0. Hence vy, v, €
Grad(w), which contradicts the assumption that w is a smooth point. Therefore,

®(t,-) is continuously differentiable for p-a.e. t € T. O

6.3 Uniform convexity

A normed linear space (X, ||-]|) is said to be uniformly convex (or to have uni-
formly convex norm) if, for each ¢ > 0, there is a § = d(¢) > 0 such that for

every z,y € X with ||z|| <1, |ly|| <1 and ||z — y|| > & we have

Hery

<1-4.
7 <

Any uniformly convex space X is also strictly convex, but there are strictly convex
spaces that are not uniformly convex. The definition of uniform convexity could be
reformulated in terms of vectors x,y with ||z|| = ||y|| = 1 and ||z — y|| = &.

We state without proof the following useful observation.

Lemma 6.18. A normed linear space X is uniformly convex if, and only if, for
any sequences {x,} and {y,} in X with ||z,|| < 1 and ||ly.|| < 1, we have that
[(@n + yn)/2|| = 1 implies ||z, — yn| — 0.

6.3.1 Uniform convexity of L

We will give necessary and sufficient criteria for the uniform convexity of LE. We

begin with the definition below.

Definition 6.19. We say that a Musielak—Orlicz function ® is uniformly convex
if for any € € (0, 1), there exist a 0. € (0, 1) and a non-negative function f = f. € L®
such that

) o
®<t7u+v>§(1_6€) (t,u)—;— (t,v)7
for all u,v > 0 such that |u — v| > e max(u,v) > f(t).

(6.3)

Suppose that, for any € > 0, there exist a §. € (0,1) and a non-negative function
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f = f. € L* such that

<I><t, %_5)“) < (1- 5€)<I>(t,u) i CDét, (- 5)u)’ for all u > f(¢).

We will show that ® is uniformly convex. Define J(t,v) = (®(t,u) + ®(¢,v))/2 —
(L, (u+v)/2), for v € (0,u). If v € (0,u) satisfies ®'(¢t,v) = @', (t,v) = O (¢,v),
then we have that J'(t,v) = ®'(¢t,v)/2 — ®'(¢,(u + v)/2)/2 < 0. Thus J(t,v) is

decreasing for v € (0,u), and hence

O(t, (u+v)/2)
~ (D(t,u) + ®(t,v))/2

is increasing. Consequently,

<I><t,u—2HJ> < (1_65)4)(75,10)—5(1)(25,@)7

for all u > v > 0 such that u — v > eu > ¢ f(t). Therefore, ® is uniformly convex.

Theorem 6.20. A Musielak—Orlicz function ® is uniformly convez if, and only if,
for any X € (0,1), there exist a 0y € (0,1) and a non-negative function f = fr € L®
such that

<I><t7 u J;Au) < (1— g2ty J;q)(t7 M) for allu > f(1).

Lemma 6.21. Let ® be a uniformly convexr Musielak—Orlicz function. Then for any
e € (0,1), there exist a 6. € (0,1) and a non-negative function f € L® such that

<I><t,

for all u,v € R such that |u — v| > e max(|ul, |v|) > ef(t).

utv O(t, [ul) + (¢ [v])

2 Y

(6.4)

)S(l—(i_:)

Proof. Fix € > 0, and denote ¢’ = 5. Since ® is uniformly convex, we can find some
de € (0,1) and a non-negative function f € L?® such that

D(t D(t
@(t’u—i_v)g(l_és/) (7“);_ (7/0)7
for all u,v > 0 such that |u — v| > &' max(u,v) > &' f(t). For u,v € R, assume that
|lu — v| > emax(|ul, |v]) > ef(t). In the case ||u| — |v|| > & max(|ul,|v]), we have
that (6.4)) is satisfied with J./ in the place of d.. Assume | |u| — |v| | < &’ max(|ul, |v]).

Then we can write

|u— v > e max(ful, [v]) = 2¢" max(ful, [v]) > 2| [u] = [v] ]
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Therefore,
‘u—l—v 2 ul? | Jo? ’u—UQ
2 2 2 2
BT VT EUI
2 4 2

_(|u|+|v|> ‘u—v
a 2 4

Since |u — v| > e max(|ul, [v]) > e it follows that

' (1 _ 352) <|U| + Ivl)2
16 2 ’

Denoting 6 = 1 — /1 — 3¢2/16 > 0, we write |4 < (1= 5~)‘u|2ﬂ Thus, by the

convexity of ®, we obtain

(t ‘u—i—v’) < (1—5)(1)(1&, |U|;L|v|> - (l_g)tl)(t, |u|);t¢(t, [vl).

‘u—f—v
2

Hence (6.4) follows for 8. = min(d.,d), and for all u,v € R such that |u — v| >
e masx([ul, [o]) > £ (1) a

Proposition 6.22. Suppose that the Musielak—Orlicz function ® is uniformly con-
ver. Then, for any A € (0,1), there exist € (0,1) and a non-negative function
g e L® such that

' (t, ) < a®’ (t,u), (6.5)

for all uw > g(t). In addition, (6.5)) implies that © satisfies the Vo-condition.

Proof. Assuming that (6.3)) is satisfied, set A = (1—¢). We rewrite (6.3) with v = A\u

as

O(t, u) + B(t, \u) O(t,u) — Bt (u+ \u)/2)

L O M0 /2) — B ) S Bt (a g w)2) — B ) 0O
By the convexity of ®(t,-), we have
O(t,u) + P(t, M)
LS S ot w)/2) — () (6.7)
and
O(t,u) — P(t, (u+ Iu)/2) < O’ (t,u) (6.8)

O(t, (u+ Au)/2) — D(t, Au) — P (t, Au)

Inserting and (6.7)) into (6.6), we get

' (t, \u) <

o’ .
+5s _(t,U)
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Then ([6.5) follows with A=1—¢,a=1/(1+6.) and g = f.
By the first part of the proof, for A = %, there exist « € (0,1) and a non-negative
function g € L® such that

1
' (t,u) < ad’ (t,2u), for all u> §g(t).
Iterating this inequality n times, we have
/ n&’ n 1
P (t,u) <a"® (¢,2"u), forall u> §g(t).

Since ®(t,2u) > ud’ (t,u) and ud’ (t,u) > ®(t,u) for all u > 0, it follows that

n n

2
—P(t,u) < —ud’ (t,u) < 2"ud’ (t,2"u)
am an”

2 1

< ®(t,2"Mu) = (¢, (2a") —u), for all u > §g(t).
an

Thus, taking a sufficiently large n > 1 such that o™ < 1/2, we obtain that ¢ satisfies

the Vs-condition. O

Corollary 6.23. Every uniformly convex Musielak—Orlicz function ® satisfies the

Va-condition.

Proposition 6.24. Let ® be a Musielak—Orlicz function satisfying the Aq-condition.
Suppose that, for any A € (0,1), there exist o € (0,1) and a non-negative function
g e L* such that

' (t, ) < a®’ (t,u), for all uw > g(t).

Then @ is uniformly convex.

Proof. Let e € (0,1). Then there exist a € (0,1) and a non-negative function g € L®
such that
Lt (1= 5u) < ad®’_(t,u), for all u > g(t).

Denote f = (1 —5)"'g. We fix any v > v > 0 such that u — v > eu > e f(t). Define
J(t,w) = (P(t,u)+D(t,w))/2—P(t, (u+w)/2), for w € (0,u). If w € (0, u) satisfies
P'(t,w) = ¥’ (t,w) = ¢’ (t,w), then we have that J'(t,w) = ®'(t,w)/2 — P'(t, (u +
w)/2)/2 < 0. Thus J(t,w) is decreasing for w € (0,u). Since (1 —e)u > v and

(1-5u>(1-5)f =g, we can write

Ot u) +2(tv) @(t u+ v> - O(t,u) + P(t, (1 —e)u)
2 ’ - 2
_ %/( (@ (1)~ W (1 Su))da

—£)u

=0, (1= 35)u)
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v
|

! /( (@ (t,2) = @ (¢, (1 - 5)2))da

vV
| —
=

—

|

L

&

=

&

QL

8

= @t u) (1, (1 5)w)
> 2@ ()~ (1 5)0(,w)
el —a)®(t,u) + O(t,u)
4 2
- e(l—a)d(t,u) + CID(t,U)‘
- 4 2
Thus is satisfied with 6. = ¢(1 — «) /4. O

Lemma 6.25. If the uniformly conver Musielak—Orlicz function ® is strictly conver,
then for any n > 0 the inequality (6.3)) is satisfied for some 6., = d. € (0,1) and a
non-negative function f, = f € L® such that Is(fy) <.

Proof. Assume that (6.3) holds for some 6. € (0,1) and a non-negative f € L%,
not necessarily satisfying Is(f) < 1. Take a measurable set Ty C T such that
Is(fxr\1r,) < 1/2, and then select some o > 0 for which Is(afxr,) < n/4. Since
the set S(t) = {u,v > 0: f(t) > u > af(t),(1 —¢)u > v > 0} is compact and
®(t,-) is strictly convex, the function 2®(t, (u + v)/2)/(P(t,u) + P(t,v)) attains a
maximum 1 — §(¢) with 6(¢) € (0,1). Choose a sufficiently small d > 0 for which
the set A = {t € Ty : 0(t) > do} satisfies Io(fxm\a) < n/4. Set 6., = min(do, ;)
and f, = fxma + afxa. The function f, satisfies

Is(fy) = Lo (fx1\10) + Lo (fXT\A) + L8 (fXA)
<n/2+n/d+n/d=n.

Moreover, it follows that

Y

¢<t7u+v) < (1—(557")@@’”);@&’@

for all u,v > 0 such that |u — v| > e max(u,v) > €f,(1). O

Lemma 6.26. Let f(t,-): S — R be a convex function, for a convex set S C R,
for p-a.e. t € T. For some 0, g € (0,1), and u,v > 0, suppose that f(t, \ou + (1 —
X)v) < (1 =8)(Nof(t,u) + (1 — No)f(t,v)), for u-a.e. t € T. Then for any subset
[, B] € (0, 1), there exists § € (0,0] such that f(t, \u+(1—X)v) < (1—=0)(Mf(t,u)+
(L =N f(t,v)), for all X € [, 8], and p-a.e. t € T.
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Proof. Let us consider the continuous function ¢’'(\) = 5%0)1 for A € (0,1).

Set & = infyca g 0'(A). Clearly, § € (0,6]. If a < A < A, then §'(\) = (5)‘(11 /\f\) and

we can write

Flt u+ (1= \o) = f(t, %(Aou 4 (1= do)v) + AOA; /\v>

< T (1= H)0af(t ) + (1= W) f(t,0) + 22 (e,0)
= (1= OAf(tw) + (1 5%) (1= N f(t,v)

< (L= ) (A f(tu) + (1= AN f(t,v)).

On the other hand, if A\ < X\ < 3, we have §'(\) = §200=X " 41d then

s
£t d+ (L= Ao) = £, 11__;\0(>\ou+ (1= o)) + i\:i\zu>
<! ‘jo <1— 0)0hf(6:0) + (1= A)f(t,0) + 351t )
-(1- 5 1_% )Af( u) + (1= 0)(1 = N f(tv)
< (L= (tw) + (1 = N (tv),
which finishes the proof. O

Theorem 6.27 (|7, Theorem 1]). For a Musielak—-Orlicz function ®, we denote

1
ke = sup {k >0 fullao = (1 + Iq>(ku))}.

llulle,0=1
A necessary and sufficient condition for ke < 0o s € V.

Proof. Necessity. Assume that ® does not satisfies the Vy-condition. Then, for any
A€ (0,1), and v > 1/, the function

uy~(t) = sup{u > 0: y®(¢,u) > O(t, \yu)}

does not belong to L®. For every rational number r > 0, define the measurable
sets A, = {t € T : yU(t,r) > ®(t, \yr)} and the simple functions u, = rya,. Let
{rr} be a rearrangement of the non-negative rational numbers with r; = 0. By the
left-continuity of ®(t,-), the functions w,(t) = maxj<g<y u,, (t) converge upward to
uy~(t), for p-a.e. t € T. For a sufficiently large ny > 1, we have that Ig(u,,) > 1.
Since Ay > 1, its is clear that ®(¢,un,(t)) < oo, for p-a.e t € T. It is easy to

check that we can find a measurable set S such that the function v = w,,, x s satisfies
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|ulleo = 1. For k € K(u), which satisfies k£ > 1, we can write

L Ta(u) < (14 Ta(w) = ullag = 1
< 31+ o)
< 3+ o)
- A—17 + %Lp(u).

Letting A 1+ 1 and v — oo, the inequality ; < /\% + (5 — 1)Ip(u) implies that & can
be arbitrarily large. This contradicts the assumption kg < oo. Thus @ satisfies the
V-condition.

Sufficiency. Assuming that ® satisfies the Va-condition, we can find, for any

7 > 2, a non-negative function u, € L?® for which
YP(t,u) < B(t, tyu), for all u > u,(t).

Take A > 0 such that A — 1 — I(u,) > 1. For any u € L® with ||ul|¢o = 1, denote
H,={t €T : | u(t)] > u,y(t)}. Since 1 = ||ullop < 3(1 + Io(Au)), we obtain

Io(Auxn,) = lo(Au) — Io(Auxr\n,)
Z )\ —1- LI,(U,YXT\HU)
2)\—1—]@(1@) Z 1.

According to Remark 2.8 we have that dg = oo. Then there exists some k& > 0 for
which 1 = ||ulle0 = £(1 + Ie(ku)). If k > A, then for j > 1 such that (17)77'A <

k < (37)IX, we can write

from which we have j < log,(v)), implying k& < (%v)logQ()‘/ M\, Therefore, ks <
0. [

Theorem 6.28. The Musielak—Orlicz space L is uniformly convex if, and only if,

(a) ® satisfies the Ay-condition,
(b) ®(t,-) is strictly convez for p-a.e. t €T, and

(¢) @ is uniformly conver.
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Proof. Necessity. Since a uniformly convex space is reflexive and strictly convex, we
have that @ satisfies the Ay- and V-conditions. In virtue of Corollary [6.9] (¢, )
is strictly convex for p-a.e. t € T. Suppose that ® is not uniformly convex. From
Proposition and Lemma there exist A € (0,1) and € > 0 for which the
functions

fult) =sup{u>0:® (t, u) > (1+1/n)7'® (t,u)}

satisfy Is(f,) > 3e. Notice that {f,} is non-increasing. For every rational number
r > 0, define the measurable sets A, , = {t € T : ' (t,\r) > (1+1/n)'®" (¢,7)}.
For r = 0, set A, , = 0. By the left-continuity of ®’ (¢,-), we have f,, = suprya,, .
Let {r;} be a rearrangement of the non-negative rational numbers with r; = 0.
Clearly, the non-negative simple functions w,, ; = max;<;<, r;x A, COnverge upward
to f,. For each n > 1, we take k, > 1 such that Is(u,x,) > 2¢. Denote u,, = uy, .
We have

O (t, Mun (1)) > (14 1/n) 710 (¢, u, (1)), for all n > 1. (6.9)

Since f; > f, > u,, we can find a measurable set Tj, with positive measure, such

that Is(unxm\1) < €, for all n > 1. Hence

/ un(t)q)/—@?un(t))dﬂ Z LD(unXTO) = I@(un) - I@(unXT\To) 2 g.
To
Thus, for each n > 1, we can find B,, C Tj such that

/ Uy ()P (8, un (1)) dp = €.

Take a > 0 and A C T'\ T, such that y; € L* and I4-(®' (t,ax1(t))) = 1. Then
we can find Ay C A such that y4, belongs to L®" and Io-(®'_(t,axa,(t))) =1 —e.
Take a sequence of measurable sets {4, } such that Ay C A, C A and

Lo+ (DL (L, axa, (1)) + Lo (DL (L, un(t))x5,) = 1.

Define

1

k.,
1
Wy, = Z—(GXAn + AupXB, )
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where
/B Un ()P (t, un(t))dp
0= /A a®’ (t,a)du —|—/B A, (0) D (t, Muy (1)) dpa.
By Io+(D"(t, kyun(t))) = 1, we get ||vn]|loo = 1. We can write

1
||wn||‘1>,0 S Z_(l + L‘D(lnwn))

n

1

_ E(Lp*(@’_(t, axa,(t))) + Io- (P (t,un(t))xs,)

+ Is(axa,) + lo(AunXB,))

:i( / o® (1, a)dp + / Nt ()8 (¢, N (1)) dp

n

+ o+ ((I)/_ (t7 un(t))XBn) — Iy ((I)’_ (ta )‘un(t))XBn)>

14 %U@@f_ (t, wn(t))x5,) — To- (@ (t, A (1)) X5,))

The sequence {l,,} is bounded from below, since

ly, > / a®’ (t,a)dp > Ip (P (t,axa,(t))) =1—¢.
Ao

Moreover, we have

Lo (DL (t, un(t))xB,) — ~(t, Aun( ))XB..)

(tyun (t
/ / ) (t, x)dxdu
n " (t )\un(t)

< / [ (1, (1)) — © (£, o ()] (D)6, (1, un (1)) s
< / [ (£, 1y (£)) — B (£, Mun (£))un ().

Collecting these results, and using , we obtain

lanllon < 14 7= [ [0t 2,(0)) = (8 D (0 )
<1ts _5%/& B (¢, un(t)))un ()
4l
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Now, in virtue of I« (P (¢, k,v,(t))) = 1, we can write

o+ tnllo = | (@nlt) + wa (D) (¢ Kavn0)

T

1
=1+ / (axa, + Aunxp, )P (¢, axa, + unxs,)du
nJT
n J By

1 1
n JA,

>1+ %(/A a®’ (t,a)du +/ /\unq)/,(t,)\un(t))d,u>

n n n

=2

Consequently, ||v,]|loo0 =1, [[wy|leo — 1 and ||v, + wy||eo0 — 2. From

kn — 1, Z/ un(t)CI)'_(t,un(t))d,u—/ Ay, (0) D (E, Muy (1)) dp

> / (1= At () (£, un (1)) dp

= €<1 - )\)7

we obtain

a a kn, — 1, 1
/ (v — wn)x A lpt = / (- = )dn = ap(Ao) = —e(1 = Nap(Ay).
T Ap kn ZTL knln kq)
Hence ||v, — wy||o0 does not converge to 0. This result contradicts the uniform
convexity of L®. Therefore, ® is uniformly convex.
Sufficiency. Let {u,} and {v,} be sequences in S(L¥) such that || (u,+v,)/2||s0 —
0. Take ¢ > 0 satisfying eks < 1. Since ® is uniformly convex, there exist a

6. € (0,1) and a non-negative function f € L® satisfying Is(f) < € such that
D(t, |ul) + (¢, [v])

c:b(t, ) <(1-16.) : ,

for all u,v € R such that |u — v| > e max(|u|, |v|) > ef(t). From Corollary [6.23] ®
satisfies the Va-condition, and hence dg = co. Thus ||Jul|eo = ﬁ(l + Ip(knuy,)) and
|lul|o0 = i(l + Ip(lpuy)), for some k,, 1, € (0,00). Define

u+v

A, ={t € T : |kyuy(t) — Lywn ()] < e max(|knu, (t)], |Laon(D)]) }
B, = {t € T : max(|k,u,(t)|, |l,v.(t)]) < f()},
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and
F,=T\ (A,UB,).

Then we can write

I@(%(knun - lnvn)) < ICI)( (k Up — lnvn)XAn>
+ Iq>(5(knun —lon)xB,) + Lp(%(knun — lavn)XE,). (6.10)

For the first and second terms in the right-side of the expression above, we have

Iy (%(k Up, — lyUn)Xa,) < Io

/‘\

25maX(|k Un |, [lnvn|) X A,)

5knunXA )+ I@(%dnUnXAn)

?T‘/_\

<1>[]<1> (unXa,) + Lo(vnxa,)]
< ckg, (6.11)

and

I<I>(%(knun — L) xB,) < Lo(max(|kntnl, [lvn|)XB,)
<Is(fxB,) <e (6.12)

Since |kpun(t) — Lv, ()] > e max(|kyun, (t)], |lova(t)|) > ef(t) for p-ae. t € F,, we

obtain

d d
<I>(t, knun (t) + Lyv, () D <(1-6) (t, [knun(t)]) + (2, |lnvn(t)])’
2 2
for py-a.e. t € F,. From 1 < k,,[l, < kg, it follows that - +l and knk;ln are in

[ﬁ, 13@]’ for every n > 1. Using Lemma [6.26] we can find 6. € (0, d.] such that

@(t,

In kn
B+ g 0]

— Iy k,
<(1-3)(; B hua(8)]) + D(t, lLavn(1))) )

for p-a.e. t € F,,. Thus we can write

- ||Un + Un||<1>70

2 — ||un + Un||<1>,0 =

1
> k_(l + Ip(kyuy)) + l_<1 + Ip(lyuy))
kn + 1, knl,
- Tl <1 I<I><kn 1, (un +Un)>)
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S kn + 1, ( ln
T kply, \kn+1,

k,
+ me(lnanFn) - ]<I>(

[<I> (knunXFn)

knl,

m(un + Un)XFn>>

k, + - l k

n ”65( " ek, " Ie(lv, )
= Py o (knu XF”)+kn+ln o(lnVnXF,)
> 258 I@(knunXFn) + I@(lnvann)
~ ko 2

25, 1

Since ||(wn + vn) /2|60 — 1, we have that Ie(5(knts — lovn)xr,) — 0. From (6.10),
(6.11) and (6.12]), it follows that

1
lim I¢(§(knun — ) < e(1+ ko).

n—oo

By the arbitrariness of € > 0, we get Io(3(k,u, — l,v,)) — 0. Since @ satisfies the

Ay-condition, ||k,u, — l,vs]|le0 — 0. Then we have

{ {
||un - Un||<I>,O - ||un - _nvn + _nvn - Un||<I>,0

kn kyn

l, l,
< lun — k_nUan),O + }k—n — 1flvnlleo

[ l
< knllun = valleo + [lunlleo = 7 lonlleol

b Fn
b

Ky,

S Hknun - lnvanJ,O + Hun - /UanJ,O

< 2||knun — lnvn||q>70 — 0.

Therefore, L is uniformly convex. O]



7 Upper and lower estimates between

Musielak—Orlicz spaces

Let X and Y be Banach lattices with norms ||| x and ||-||y such that X is contained
inY. For 1 < p,qg < oo, we say that X upper p-estimate Y, respectively, Y
lower g-estimate X, if there exists a finite constant M > 0 such that for any finite
collection of pairwise disjoint elements {x;}", in X, we have

n P
< M(aninﬁ() |
Y i=1

n

>

=1

respectively,
n

PR

=1

n q
> M—l(anina) |
=1

When X upper p-estimate itself, respectively, X lower g-estimate itself, then X is

X

said to satisfy an upper p-estimate, respectively, lower g-estimate.

Definition 7.1. Let ® and ¥ be Musielak—Orlicz functions. If there exist a constant

a > 0, and a non-negative function f € L? such that
U(t, M) < aXi®(t,u), forall A >1and u > f(t), (7.1)

then ¥ and ¢ are said to be A%-conditioned. If we can find a constant a > 0, and

a non-negative function f € LY such that
aXPW(t,u) < ®(t, Au), forall A >1and u > f(t), (7.2)

then we say that ¥ and ® are VP-conditioned.

Definition 7.2. Let ® be a Musielak—Orlicz function. If there exist a constant

a > 0, and a non-negative function f € L® such that
O(t, \u) < aX®(t,u), forall A >1and u> f(t), (7.3)

then & is said to satisfy the A?condition, or to belong to the A%-class (denoted

as ® € A9). If we can found a constant a > 0, and a non-negative function f € L®
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such that
O(t, \u) > aXPO(t,u), forall A >1and u > f(t), (7.4)

then we say that ® satisfies the VP-condition, or belong to the V?-class (written
as & € VP).

Theorem 7.3. The Musielak—Orlicz functions W and ® are AY-conditioned, respec-
tively, VP-conditioned, if and only if LY lower g-estimate L®, respectively, L® upper

p-estimate LY.

Corollary 7.4. A Musielak—Orlicz function ® satisfies the A?-condition, respec-
tively, the VP-condition, if and only if L® satisfies a lower g-estimate, respectively,

an upper p-estimate.

Theorem 7.5. If the Musielak—Orlicz functions ¥ and ® are AY-conditioned, re-
spectively, VP-conditioned, then LY lower q-estimate L, respectively, L® upper p-es-

timate LY.

Proof. Let {u;}"_, be any sequence of pairwise disjoint functions in L®. Suppose
that U and ® are A%conditioned. Since in ([7.1)) there holds o > 1, we have M :=
a(l + Iy(f)) > 1. Denote b; = |lu;llg and b = (37 |lu;||§)Ve, for i = 1,... n.
Clearly, b;/b < 1. Taking the measurable set A = {t € T : 7743 >y wi(t) > f(t)},

we can write

14 I(f) = % i(%)qh(%) < éi %)%(%ﬁm + 1))

=1

Thus, from the inequality 1 < Ip(> 0, u;/(M '), it follows that [|>7  wille >
MEL a4

Assume that ¥ and & are VP-conditioned. In ([7.2) we have o < 1, and then
M :=1/a+Iy(f) > 1. Denote a; = ||u||¢ and a = (31 ||wi|lp) /P, fori =1,... n.
Obviously, a;/a < 1. Denoting the measurable set A = {t € T : Y7 w;(t)/c >

f(t)}, we can write

fo(2= 30 w) < 1 (3 M+ )

=1 =1
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p

S in) 21

Therefore, |37 wille < M7 [Jui||5) 7. -

Lemma 7.6. The Musielak—Orlicz functions W and ® are A?-conditioned if, and
only if, the function

?a,n = sup fOé7i

>n

belongs to L® for some o > 0 and n > 1, where
fai(t) = sup{u > 0: U(t,2'u) > a2"®(t,u)}. (7.5)

Proof. If ¥ and ® are A?-conditioned, then clearly Tam < f e L*, where f is the
function found in ([7.1J).
Suppose that f,,, € L® with f,; given in (7.5). Denoting for any A > 1

() = sup{u > 0: U(t, \u) > a\D(t,u)},

we have f,,, = sup;s, f2. We will show that the function supys,; f2, is in L? for a

suitably chosen ag > 0. Take some g > «2™?. Thus we can write
SUPy < y<on [, () < sup{u > 0: W(t,2"u) > ap®(t, u)}

<sup{u > 0:V(t,2"u) > a2™P(t,u)}
< fan(t).

Assuming A > 2", select an integer ¢ > 1 for which 27! < X\ < 2% and then

2 (1) < sup{u > 0:U(t,2') > 209D (¢ 1)}
<supfu > 0: WU(t,2u) > a2"9®(t,u)}
< fa,i<t) < ?a,n(w'

Hence supy. < f2, < fa’n € L®. Therefore, ¥ and ® are A%conditioned. O

Lemma 7.7. If the Musielak—Orlicz functions W and ® are not Al-conditioned,

then we can find a sequence of pairwise disjoint functions {u,} in L* such that

12201 tnlle < 00 and 3207, [unfy = oo

Proof. Let {r;} be the set of non-negative rational numbers indexed by j € N.

Define the measurable set

Al ={teT:U(t,2r)) > 2"290(t,r))}.
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We can find sufficiently large integers iy, {nz};’l:l such that the function

Up = max U, where Uy = MAX 75X 4 (7.6)
1<i<ip < <n, Li

satisfies the inequality I(u1) > 2. Clearly, the functions uy;, = maxi<j<n ;X 4
- k,i

converge upward as n — 0o to
fri(t) = sup{u > 0: O(t, 2'u) > 2729 (t, u)}.

From Lemma the assumption that ® does not satisfy the A%-condition guar-
antees that Ie(maxi<;<;, f1;) > 2 for some integer iy > 1. Hence we can select
sufficiently large integers {n;}’", in so that Ip(up) > 2.

Pick up recursively the integers 0 = ig < 41 < -+ < i < --- and n; > 1 such
that the functions

Up = Max U, where Up; = MAX T5X 45
ip—1<i<ip ’ 1<j<n; ki

satisfies the inequality Ig(uy) > 2 for all k > 1.

For each i € Iy, where Iy, := {iy_1 + 1,... i}, we take the disjoint sets
Mg, ={t €T :w(t) = ug(t) > ug ;(t) for iy < j <i}.

Writing u, = 3., uriXar,,, we denote Vi(t) = 3o 57 U (E, 2wk i(t) Xy, (). The
way the function u;, was defined provides the inequality Vj(t) > 28® (¢, uy(t)), which
implies

T

In virtue of Lemma [3.27, we can find measurable measurable sets {4} and integers
ki < --- <k <--- such that

/ Viydp =2, forall I > 1.
A

In order to avoid a notation overload, we continue using {V}} in the place of {V},},
i.e., we assume fAk Vidp = 2, for all k > 1.
Denote M,'“ = Mj,; N Ay. For each k£ > 1, we take the following subset of Ij:

Sy={i€l}: f\p(2iuk,z‘XM;€7i) <1}
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From the expressions

1

Z ﬁf\y@ ukixmy,) <1, and Z ﬁ[‘l’ uk,iXM,’m.) =2,
1€Sy i€l

we obtain that Sy is a proper subset of I, and denoting I}, = I \ Sy # 0, we can

write

1
Zﬁ[‘l’@ Up,i XM}, ) >1
iel],

Since every i € I}, satisfies Ig,(Qiuk,iXMé ) > 1, we can find my; = LI\I,(Q"uk,,;XM;c )J >
1 disjoint subsets B,};ﬂ-, e ,ng”" of M,;Z such that

]\D<2iuk,z‘XB£ )>1, forj=1,...,my,.

Thus, the functions uf“ = uk’iXBi,i satisfy HuizH\If > 27%. Observing that my,; >
S(mg; +1) > %I\P(Tuk,iXM,’m% we get

M; M, m
k,i
luf, M1 > :
ki 274q 2iq
k= 116[’ 7j=1 k= 1@6[’ 7j=1 k= 17,6[’

>Z Zﬁ]‘l’ QUkZXM’ )
k=1 1€I’
=1
Z_
k=1

\)

In addition, the inequalities

m M

B(ET3 ) - a3 )

k=1icI; j=1 k=1 iecI;

< Z Z Lo (uraxny,)

k=1 el
[e.e]
2

9k
k=1

< < 0

show that the sequence {uf“} satisfies the properties stated in the lemma. ]

Lemma 7.8. Let ® and ¥ be Musielak—Orlicz. If L® upper p-estimate LY, then ¥

and ® are VP-conditioned.

Proof. Since L® upper p-estimate LY, there exists a finite constant A > 0 such that

IS0 wille < MO |Juil|h)YP for every sequence of pairwise disjoint functions
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w Y™, in L®. Let {v;}", be a sequence of pairwise disjoint functions in L¥". Then,
=1 =1 ]

forq>1suchthat%+%:1,

n 1/q n n 1/p
(Stse) = s [ (S w)aw: (Shalt) <1}
i=1 T \j=1 i=1
§sup{/ <Zuiv,~)d,u: SM}
T Ni=1 v

> u
i=1

n

v

=1

=M

)

\I]*

where the sequence {u;}?_; C L? in the suprema above are taken pairwise disjoint
and |u| A Jvj| = 0 for every 1 <i # j < n. Consequently, L*" lower g-estimate LY.

In virtue of Lemma [7.7], the functions ®* and ¥* are A%conditioned:
O*(t, \u) < aXTU*(t,u), forall A\ >1and u > f(t),

. . F* .
for some constant a > 0 and a non-negative function f € LY . Hence we can write

1 1
w@*(t,u) < U™ (t, XU) + h(t), forall A >1and u >0,

where h(t) = U*(t, f(t)). Calculating the Fenchel conjugate of the functions in the

expression above, we obtain

1
U(t, Au) < —/\CD(t, aXlu) + h(t), for all A >1 and u > 0,

aN
and, with the appropriate substitutions,

1

Wt u) < ——

O(t, \u) + h(t), forall A >1 and u > 0.
Proceeding as in the proof of Proposition 2.3, we get the inequality
BN (t,u) < P(t, Au), for all A >1 and u > fz(t),

for B € (0,7%) and f4(t) = ® (¢, “="_h(t)). Therefore, the functions ¥ and &

al-1—p
are VP-conditioned. O



8 Applications to Information Geometry

In this chapter Musielak—Orlicz spaces are applied to Information Geometry. We
generalize the exponential family of probability distributions &,. The exponential
function is replaced by a ¢-function, resulting in a p-family of probability distribu-
tions F¥. We show how p-families are constructed. In a -family, the analogous of
the cumulant-generating functional is a normalizing function. We define the (-diver-
gence as the Bregman divergence associated to the normalizing function, providing
a generalization of the Kullback—Leibler divergence. A formula for the ¢-divergence

where the p-function is the Kaniadakis’ k-exponential function is derived.

8.1 Introduction

Let (T, %, ) be a o-finite, non-atomic measure space. We denote by P, = P(T, %, 1)
the family of all probability measures on 7' that are equivalent to the measure p.
The probability family P, can be represented as (we adopt the same symbol P, for

this representation)
P,={peL’:p>0and E]p] =1},

where LU is the linear space of all real-valued, measurable functions on 7', with
equality p-a.e., and E[-] denotes the expectation with respect to the measure pu.

The family P, can be equipped with a structure of C*°-Banach manifold, using
the Orlicz space L®' (p) = L* (T, %, p- i) associated to the Orlicz function ®;(u) =
exp(u) —1, for u > 0. With this structure, P, is called the exponential statistical
manifold, whose construction was proposed in [53] and developed in [52] 9l 2T].
Each connected component of the exponential statistical manifold gives rise to an
exponential family of probability distributions &, (for each p € P,). Each
element of &, can be expressed as

y(u) = Tl

P, for u € By, (8.1)
for a subset B, of the Orlicz space L*!(p). K, is the cumulant-generating functional

K,(u) = logE,[e*], where E,[-] is the expectation with respect to p - u. If ¢ is a
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measurable function such that p = e, then (8.1) can be rewritten as

ep(u) _ echupr(u)-lT ,

for u € B,, (8.2)
where 14 is the indicator function of a subset A C T'.

In the p-family of probability distributions F7, which we propose, the
exponential function is replaced by the so called p-function p: T x R — [0, oc].
The function ¢(t, -) has a “shape” which is similar to that of an exponential function,
with an arbitrary rate of increasing. For example, we found that the x-exponential
function satisfies the definition of p-functions. As in the exponential family, the
¢-families are the connected component of P,, which is endowed with a structure
of C*°-Banach manifold, using ¢ in the place of an exponential function. Let ¢ be
any measurable function such that ¢(t,c(t)) belongs to P,. The elements of the
@-family of probability distributions F¢¥ are given by

P (u)(t) = (t, c(t) + u(t) — P(u)uo(t)),  forue BE, (8:3)

for a subset BY of a Musielak—Orlicz space LY. The normalizing function ¢: BY —
[0,00) and the measurable function uy: 7" — [0,00) in (8.3)) replaces K, and 1 in
, receptively. The function ug is not arbitrary. In the text, we will show how
ug can be chosen.

We define the p-divergence as the a Bregman divergence associated to the nor-
malizing function v, providing a generalization of the Kullback—Leibler divergence.
Then geometrical aspects related to the ¢-family can be developed, since the Fisher
information (from which the Information Geometry [3] [41] is based) is derived from
the divergence. A formula for the ¢-divergence where the p-function is the Kani-
adakis’ k-exponential [34] function is derived, which we called the k-divergence.

We expect that an extension of our work will provide advances in other areas,
like in Information Geometry or in the non-parametric, non-commutative setting
[19, [49]. The rest of this chapter is organized as follows. Section deals with the
topics of Musielak—Orlicz spaces we will use in the the construction of the ¢-family
of probability distributions. In Section [8.3] the exponential statistical manifold is
reviewed. The construction of the ¢-family of probability distributions is given in
Section [8.4]l Finally, the ¢-divergence is derived in Section

8.2 Musielak—Orlicz function spaces

The purpose of this section is to make the chapter self contained. In this section we

provide a brief introduction to Musielak—Orlicz (function) spaces, which are used in
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the construction of the exponential and (-families.
We say that ®: T' x [0, 00] — [0, 00] is a Musielak—Orlicz function when, for
p-ae. t el

(i) ®(¢,-) is convex and lower semi-continuous,
(i) ®(t,0) = lim, o P(t,u) = 0 and ®(t, 00) = oo,
(iii) @(-,u) is measurable for all u > 0.

Items (i)—(ii) guarantee that ®(t,-) is not equal to 0 or co on the interval (0,00). A
Musielak—Orlicz function @ is said to be an Orlicz function if the functions ®(t, -)
are identical for p-a.e. t € T.

Define the functional I (u) = [, (¢, |u(t)|)dp, for any u € L°. The Musielak—
Orlicz space, Musielak—Orlicz class, and Morse—Transue space, are given
by

L* ={u € L°: Is(\u) < oo for some A > 0},
L® ={ue L°: I4(u) < oo},

and

E* ={uec L°: Is(\u) < oo for all A > 0},

respectively. If the underlying measure space (T, %, 1) have to be specified, we write
L®(T,%, ), L*(T, %, 1) and E®(T, %, 1) in the place of L®, L* and E®, respectively.
Clearly, E* C L®* C L® The Musielak-Orlicz space L® can be interpreted as
the smallest vector subspace of L° that contains L®, and E® is the largest vector
subspace of L? that is contained in L®.

The Musielak-Orlicz space L® is a Banach space when it is endowed with the

Luxemburg norm
ulle = inf{)\ >0 Lb(g) < 1},

or the Orlicz norm
lul|loo = sup{‘/ uvd,u‘ cv € L® and I (v) < 1},
T

where ®*(t,v) = sup,>¢(uv — ®(t,u)) is the Fenchel conjugate of ®(t,-). These
norms are equivalent and the inequalities ||ule < |lulle0 < 2||ulle hold for allu € L®.

If we can find a non-negative function f € L® and a constant K > 0 such that

O(t,2u) < K®(t,u), forall u> f(t),
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Figure 8.1: Transition map.

then we say that ® satisfies the Ay-condition, or belong to the As-class (denoted
by ® € Ay). When the Musielak-Orlicz function ® satisfies the Ay-condition, E®
coincides with L®. On the other hand, if ® is finite-valued and does not satisfy
the Ay-condition, then the Musielak-Orlicz class L? is not open and its interior
coincides with
By(E® 1) ={u e L®: inf |lu—v|eo < 1},
veE?

or, equivalently, Bo(E® 1) ¢ L* ¢ By(E®,1).

8.3 The exponential statistical manifold

This section starts with the definition of a C*-Banach manifold [38]. A C*-Banach
manifold is a set M and a collection of pairs (U,, €,) (« belonging to some indexing
set), composed by open subsets U, of some Banach space X,,, and injective mappings

x,: U, — M, satisfying the following conditions:
(bml) the sets x,(Uy) cover M, ie., |, a(Ua) = M;

(bm2) for any pair of indices «, 8 such that x,(U,) Nxs(Us) = W # (), the sets
xL(W) and :I;El(W) are open in X, and Xz, respectively; and

«

(bm3) the transition map wgl oxy: N (W) — wgl(W) is a C*-isomorphism (see
Figure .

The pair (U,,x,) with p € x,(U,) is called a parametrization (or system of
coordinates) of M at p; and x,(U,) is said to be a coordinate neighborhood

at p.



CHAPTER 8. APPLICATIONS TO INFORMATION GEOMETRY 100

The set M can be endowed with a topology in a unique way such that each
o (U,) is open, and the x,’s are topological isomorphisms. We note that if £ > 1
and two parametrizations (U,, x,) and (Ug, xz) are such that x,(U,) and x3(Up)
have a non-empty intersection, then from the derivative of mgl o x, we have that
X, and Xjp are isomorphic.

Two collections {(U,, )} and {(Vs, )} satisfying (bm1)—(bm3) are said to be
C*-compatible if their union also satisfies (bm1)—(bm3). It can be verified that
the relation of C*-compatibility is an equivalence relation. An equivalence class of
C*-compatible collections {(U,, )} on M is said to define a C*-differentiable
structure on X.

Now we review the construction of the exponential statistical manifold. We con-
sider the Musielak—Orlicz space L*1(p) = L* (T, %, p- u), where the Orlicz function
®;: [0,00) — [0,00) is given by ®;(u) = e* — 1, and p is a probability density
in P,. The space L*(p) corresponds to the set of all functions v € L° whose
moment-generating function %,(\) = E,[e*"] is finite in a neighborhood of 0.

For every function u € L we define the moment-generating functional
Mp(u) = E,[e"],
and the cumulant-generating functional
K, (u) = log M,(u).

Clearly, these functionals are not expected to be finite for every u € L°. Denote
by K, the interior of the set of all functions u € L®!(p) whose moment-generating
functional M,(u) is finite. Equivalently, a function u € L®!(p) belongs to K, if
and only if M,(Au) is finite for every A in some neighborhood of [0, 1]. The closed

subspace of p-centered random variables
B, = {u e L*(p) : E,fu] = 0}

is taken to be the coordinate Banach space. The exponential parametrization
e,: B, = &, maps B, = B, N K, to the exponential family &, = e,(B,) C P,
according to

u—Kp(u)

e,(u) =e p, for all u € B,.

e, is a bijection from B, to its image &, = e,(B,), whose inverse e;': £, — B, can

be expressed as

e;l(q) = log(%) —E, [log<%>], for g € &,.
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Since K,(u) < oo for every u € KC,, we have that e, can be extended to IC,. The
restriction of e, to B, guarantees that e, is bijective.

Given two probability densities p and ¢ in the same connected component of P,,,
the exponential probability families £, and &, coincide, and the exponential spaces
L®'(p) and L' (q) are isomorphic (see [52, Proposition 5). Hence B, = e, '(£,N&,)
and B, = e;*(£,N&,). The transition map e, ' oe, : B, — B,, which can be written

as
q

e;'oe,(u) =u+ log(§> —E, [u + log(gﬂ, for all u € B,

is a C*-function. Clearly, (J,cp, €5(By) = P,. Thus the collection {(B,, e,)},ep,
satisfies (bml)-(bm2). Hence P, is a C°-Banach manifold, which is called the

exponential statistical manifold.

8.4 Construction of the ¢-family of probability distributions

The generalization of the exponential family is based on the replacement of the
exponential function by a ¢-function p: T x R — [0, oc] that satisfies the following
properties, for py-a.e. t € T

(al) o(t,-) is convex and injective,
(82) 90<t7 —OO) = 0 and 90<t7 OO) = 00,
(a3) (-, u) is measurable for all u € R.

In addition, we assume a positive, measurable function uy: T"— (0, 00) can be found
such that, for every measurable function ¢: 7' — R for which (¢, ¢(t)) is in P, we
have that

(ad) o(t,c(t) + Aug(t)) is p-integrable for all A > 0.

The choice for ¢(t,-) injective with image [0,00] is justified by the fact that a
parametrization of P, maps real-valued functions to positive functions. Moreover, by
(al), ¢(t,-) is continuous and strictly increasing. From (a3), the function ¢(¢, u(t)) is
measurable if and only if u: 7" — R is measurable. Replacing (¢, u) by o(t, uo(t)u),

a ‘new” function uy = 1 is obtained satisfying (a4).

Example 8.1. The Kaniadakis’ k-exponential exp,: R — (0,00) for k € [—1, 1]
is defined as (see Figure

(ku + 1+ K2u2)V% if K # 0,

exp(u), if kK =0.

exp(u) =
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exp, (u)
k=0.0
6 k=05
4 1
2 1
-2 -1 1 2

Figure 8.2: Kaniadakis’ k-exponential function exp,.

The inverse of exp, is the Kaniadakis’ «-logarithm

K —K

u —u
Lot k0,
Ing(u) ={ 2w 7

In(u), if K =0.

Some algebraic properties of the ordinary exponential and logarithm functions are

preserved:

exp, (u) exp,(—u) = 1, In,(u) +In,(u™") = 0.

For a measurable function x: T"— [—1, 1], we define the variable x-exponential
exp,: T'x R — (0,00) as
exp,(t,u) = eXPy(p) (u),

whose inverse is called the variable k-logarithm:

In, (¢, u) = Ing)(u).

Assuming that k_ = essinf|k(¢)| > 0, the variable k-exponential exp, satisfies (al)—
(a4). The verification of (al)—(a3) is easy. Moreover, we notice that exp,(t,-) is

strictly convex. We can write for a@ > 1

expn(ta au) = (H(t)ozu + Oé\/l/a2 + /{(t)2u2)1/f€
< Ozl/INI(/{(t)u +4/1+ H(t)2u2)1/n

< a/"=exp,(t, u).
By the convexity of exp,(t,-), we obtain for any A\ € (0,1)

exp,(t,c+u) < Xexp,(t,\7'c) + (1 — N exp, (¢, (1 — \) ')
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< AUk exp,(t,c) + (1 — )\)1’1/“‘ exp, (t, u).

Thus any positive function uy such that E[exp, (ug)] < oo satisfies (a4).

Let ¢: T'— R be a measurable function such that ¢(¢,c(t)) is u-integrable. We

define the Musielak—Orlicz function

O(t,u) = p(t, c(t) +u) — @(t, c(t)).

and denote L*, L* and E® by L?, L¥ and E?, respectively. Since ¢(t,c(t)) is
p-integrable, the Musielak—Orlicz space LY corresponds to the set of all functions
u € L° for which ¢(t,c(t) + Au(t)) is p-integrable for every A contained in some
neighborhood of 0. By the convexity of ¢(t,+), we have

u'(t,e(t)) < plt, c(t) +u) — p(t,ct)), for all u € R, (8.4)

where ¢’ (t,-) denotes the right-derivative of (¢, -). Hence every function u in L¢
belongs to the weighted Lebesgue space L (1) where w(t) = ¢'(t, c(t)).

Let K¢ be the set of all functions u € L¥ such that ¢(t, ¢(t)+Au(t)) is p-integrable
for every A in a neighborhood of [0, 1]. Denote by ¢ the operator acting on the set of
real-valued functions u: T'— R given by ¢(u)(t) = ¢(t,u(t)). For each probability
density p € P,, we can take a measurable function c¢: 7" — R such that p = ¢(c).

The first import result in the construction of the ¢-family is given below.
Lemma 8.2. The set K? is open in L?.

Proof. Take any u € Kf. We can find € € (0, 1) such that E[p(c + au)] < oo for
every a € [—¢,1+¢]. Let § = [2(1+¢)(1 + £)]7". For any function v € L¢ in the
open ball B; = {w € L? : ||w|le < d}, we have I5(%) < 1. Thus E[ep(c + 1[v])] < 2.

Taking any a € (0,1 + 5), we denote A = %= In virtue of

« « 1+< 2 € 1
= < 2_—2(1 1+ )=2=
1+e

it follows that

plc+au+v)) =@M+ Su) + (1= A)(c+ 1%50))
< Ap(c+ Su) + (1 = Np(c+ 125v)
< Aple+ (1+e)u) + (1= A)p(c+ 3|v]). (8.5)

For o € (—5,0), we can write

p(c+a(u+v)) < tp(c+ 20u) + 2o(c+ 2av)



CHAPTER 8. APPLICATIONS TO INFORMATION GEOMETRY 104
< 1p(c+ 2au) + 50(c+ |v]). (8.6)

By (8.3) and (8.6), we get E[p(c+a(u+v))] < oo, for any v € (=5, 1+5). Hence the
ball of radius 0 centered at u is contained in K?. Therefore, the set ¥ is open. [

Clearly, for u € K¢ the function ¢(c+ u) is not necessarily in P,. The normal-

izing function ¢: £ — R is introduced in order to make the density

p(c+u—(u)ug)

contained in P, for any v € K¢. We have to find the functions for which the
normalizing function exists. For a function u € L¥, suppose that ¢(c+ u — auyg) is

p-integrable for some o € R. Then w is in the closure of the set f. Indeed, for any
A€ (0,1),

(c+ M) = p(AMe+u—aug) + (1 = X)(c+ 25aug))
< Ap(c+u—aug) + (1 — N(c+ 2aug).

Since the function wug satisfies (ad), we obtain that ¢(c+ Au) is p-integrable. Hence

the maximal, open domain of v is contained in K¥.

Proposition 8.3. If the function u is in K, then there exists a unique ¥ (u) € R
for which ¢(c +u — P(uw)ug) is a probability density in P,,.

Proof. We will show that if the function w is in K¢, then ¢ (c+u+auy) is u-integrable
for every a € R. Since u is in K¢, we can find € > 0 such that ¢(c + (1 + €)u) is

c)
1

iz, We can write

p-integrable. Taking A =
o(c+u+auy) =@Ac+ su) + (1= A)(c+ =aug))
< Ap(e+ su) + (1= Ne(c+ 5 aug).

Thus ¢(c + u + augp) is p-integrable. By the Dominated Convergence Theorem,
the map a — J(a) = E[p(c + u + auy)] is continuous, tends to 0 as o — —oo,
and goes to infinity as a — oo. Since ¢(t,-) is strictly increasing, it follows that
J () is also strictly increasing. Therefore, there exists a unique 1(u) € R for which

p(c+u—1p(u)ug) is a probability density in P,,. O

The function ¥: £f — R can take both positive and negative values. However,
if the domain of 9 is restricted to a subspace of L¥, its image will be contained in

c)

[0,00). Denote the closed subspace

Bf = {uc Lf : Elug, (¢)] = 0},
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and let BY = BY N K¢. Supposing that v € B, it follows that E[u¢’, (¢)] = 0 and
E[p(c + u)] < oo; and, according to inequality (8.4]), we have

1 = Elug’, (0)] + E[p(c)] < E[p(c+u)] < oo.

If u € K? belongs to the subspace BY, the integral of ¢(c + u) is greater than or
equal to 1. Subtracting ¥ (u)ug, the integral decreases to 1, and we obtain that
plc+u—1P(u)ug) is in P,.

For each measurable function ¢: T — R such that the probability density p =
¢(c) belongs to P,, we associate a parametrization ¢,: BY — F¢ that maps each

function w in BY to a probability density in F? = ¢.(Bf) C P, according to

P.(u) = @(c+u—y(u)uo).

Clearly, we have P, = |J{F? : ¢(c) € P,}. Moreover, the map ¢, is a bijection
from BY to F¢. If the functions u,v € Bf are such that ¢, (u) = ¢.(v), then the
difference u — v = (Y (u) — ¥(v))uyp is in BY. Consequently, ¢(u) = ¥ (v) and then
u=.

Suppose that the measurable functions ¢;,co: T — R are such that p; = (c1)
and py = ¢(cz) belong to P,,. The parametrizations ¢, : B — F¢ and ¢, B —

F¢ related to these functions have transition map

Py 0Pyt P (FENFE) = oo, (FENFL).

Let ¢1: Bf — R and v¢,: Bf, — R be the normalizing functions associated to ¢,
and cy, respectively. Assume that the functions u € B and v € B, are such that

@, (u) =@, (v) € FZ N FZ. Then we can write

v=c —co+u— (P1(u) — P2(v))ue.

Since the function v is in B, if we multiply this equation by ¢’, (cz) and integrate

with respect to the measure p, we obtain

0=E[(c1 — c2 + u)p (c2)] — (¢h1(u) — () E[uog!, (c2)].
Thus the transition map cpc_; o ., can be expressed as

E[(c1 — c2 +w)¢’ (c2)]

E[U090/+(02)] o (8.7)

Poy 0P, (W) =1 — e+ w—
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for every w € @ ' (F¢ NFE). Clearly, this transition map will be of class C™ if we
show that the functions w and ¢; — ¢, are in LY, and the spaces LY and L¢, have
equivalent norms. It is not hard to verify that if two Musielak—Orlicz spaces are
equal as sets, then their norms are equivalent (see [42, Theorem 8.5]). We make use

of the following:

Proposition 8.4. Assume that the measurable functions¢,c: T — R satisfy E[p(t, ¢(t))] <
oo and E[p(t, c(t))] < co. Then LY C L¥ if and only if ¢ — c € L¥.

Proof. Suppose that ¢ —cisnot in LY. Let A= {t € T : ¢(t) < ¢(t)}. For A € [0, 1],

we have

Elp(c+ (e —c))]

Elp(c+ A€ = ¢))1ma] + Elp(c+ A€ = ¢))14]
Elp(c+ (¢ — ¢))1ra] + Ep(c)14]
< E[p(0)] + E[p(c)] < oo.

IA

Since ¢ — ¢ ¢ LY, for any A > 0, there holds E[p(c — A(¢ — ¢))] = oco. From

Elp(c = A(c—¢))]

Elp(c — A€ = ¢))Ina] + Elp(c — A(c = ¢))14]
Elp(c+ A(e—¢))1a],

IN

we obtain that (¢ —¢)14 does not belong to L¢. Clearly, (¢ —¢)14 € L. Conse-
quently, LZ is not contained in L?.
Conversely, assume ¢ — ¢ € L¥?. Let w be any function in LZ. We can find € > 0

such that E[p (¢ + Aw)] < oo, for every A € (—¢,¢). Consider the convex function
g0, ) = Elp(c + a(@ - ¢) + )]

This function is finite for A = 0 and « in the interval (—n, 1], for some n > 0.
Moreover, g(1, \) is finite for every A € (—¢, ). By the convexity of g, we have that
g is finite in the convex hull of the set 1 x (—e,e) U (—n, 1] x 0. We obtain that
g(0, A) is finite for every A in some neighborhood of 0. Consequently, w € L?. Since

w € L? is arbitrary, the inclusion Lf C L? follows. O

Lemma 8.5. If the function u is in K¢ and we denote ¢ = ¢+ u — (u)ug, then the

spaces LY and LY are equal as sets.

Proof. The inclusion L C L¢ follows from Proposition [8.4] Since u € K¢, we have
Elp(c+ M) < Elp(c+ (1 + Mu)] < oo,

for every A in a neighborhood of 0. Thus ¢ — ¢ = —u + ¢)(u)ug belongs to LZ. From
Proposition we obtain LZ C L?. O
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By Lemma if we denote ¢; +u — ¥y (u)ug = ¢ = c3 + v — Yo(v)ug, we have
that the spaces L¢ , LZ and L¢ are equal as sets. In (8.7), the function w is in LY,
and consequently ¢; —cy is in LY. Therefore, the transition map (,00_21 o,, is of class
.

Since @' o, is of class C™, the set @ ' (FZ NFE) is open BY. The p-families
F¢ are maximal in the sense that if two ¢-families ¢ and F7 have non-empty

intersection, then they coincide.
Lemma 8.6. For a function u in B?, denote ¢ = ¢ +u — ¢(u)ug. Then F¥ = F£.

Proof. Let v be a function in B?. Then there exists ¢ > 0 such that, for every
A € (—¢,1 + ¢), the function ¢(c + Av + (1 — A)u) is p-integrable. Consequently,
o(c+ Mv —u)) is p-integrable for all A € (—¢,1 + ¢). Thus the difference v — u is
in K7 and
E _ /
w=v—u-— (G U2¢+(a]u0 (8.8)
Bl (0)

belongs to BZ. Let v BZ — [0,00) be the normalizing function associated to ¢.
Then the probability density (¢ + w — 1; (w)ug) is in FZ. This probability density

can be expressed as ¢(c + v — kug) for a constant k. According to Proposition [8.3]
there exists a unique ¥ (u) € R such that the probability density ¢(c+ v — ¥ (v)uo)
is in F¢. Therefore, F¢ C F7.

Using the same arguments as in the previous paragraph, we obtain that ¢ =
C+w — i/;(w)uo, where the function w € BY is given in 1} with v = 0. Thus
F£CFE. O

By Lemma , if we denote ¢; + u — 1 (w)ug = ¢ = ¢y + v — Yo (v)ug, then we
have the equality F¥ = Ff = F7.

The results obtained in these lemmas are summarized in the next Proposition.

Proposition 8.7. Let c1,co: T — R be measurable functions such that the probabil-
ity densities py = @(c1) and py = @(c2) are in P,. Suppose FE NFE # 0. Then the
Musielak—Orlicz spaces L and LY, are equal as sets, and have equivalent norms.

Y — T
Moreover, Ff = F§.

The collection {(B¢,®,.)}p(c)ep, satisfies (bml)-(bm2), equipping P, with a

C°°-differentiable structure.

8.5 Divergence

In this section we define the divergence between two probability distributions. The
entities found in Information Geometry [3], 41], like the Fisher information, connec-

tions, geodesics, etc., are all derived from the divergence taken in the considered
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family. The divergence we will found is the Bregman divergence [6] associated to
the normalizing function 1: K¢ — [0,00). We show that our divergence does not
depend on the parametrization of the ¢-family F7.

Let S be a convex subset of a Banach space X. Given a convex function f: S —

R, the Bregman divergence B;: S x S — [0, 00) is defined as

By(y,x) = f(y) — f(z) — 0, f(z)(y — x),

for all z,y € S, where 0y f(z)(h) = limyo(f(x + th) — f(z))/t denotes the right-
directional derivative of f at x in the direction of h. The right-directional deriva-
tive 04 f(x)(h) exists and defines a sublinear functional. If the function f is strictly
convex, the divergence satisfies By(y,z) = 0 if and only if x = y.

Let X and Y be Banach spaces, and U C X be an open set. A function f: U — Y
is said to be Gateaux-differentiable at z, € U if there exists a bounded linear
map A: X — Y such that

1
lim —[|f (o +th) — f(z0) — Ahl| =0,

for every h € X. The Gateaux derivative of f at z is denoted by A = 0f(z). If
the limit above can be taken uniformly for every h € X such that ||h|| < 1, then the
function f is said to be Fréchet-differentiable at xy. The Fréchet derivative of
f at xq is denoted by A = D f(x).

Now we verify that ¢: ¥ — R is a convex function. Take any u,v € K? such
that u # v. Clearly, the function Au + (1 — A)v is in K%, for any A € (0,1). By the

convexity of (t,-), we can write

Elp(c+ M+ (1 — Ao — Mb(w)ug — (1= \b(v)uo)]
< AE[p(c +u — $(u)uo)] + (1 = N Efip(c +v — v(v)ug)] = 1.

Since p(c+ Au+ (1 — A)v — ¢ (Au+ (1 — A)v)ug) has p-integral equal to 1, we can
conclude that the following inequality holds:

Y(Au+ (1= A)v) < Mp(u) + (1 = A)p(v).

So we can define the Bregman divergence By from to the normalizing function ).
The Bregman divergence By : BY x BY — [0,00) associated to the normalizing

function ¢: BY — [0, 00) is given by

By (v,u) = $(v) — $(u) — D (w)(v — ).
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Then we define the divergence D, : Bf x BY — [0, 00) related to the p-family F¢ as
Dy (u,v) = By(v,u).

The entries of By, are inverted in order that D, corresponds in some way to the
Kullback—Leibler divergence Dy (p,q) = E[plog(£)]. Assuming that ¢ (¢, -) is

continuously differentiable, we will find an expression for 9y (u).

Lemma 8.8. Assume that o(t,-) is continuously differentiable. For any u € K¢,
the linear functional f,: LY — R given by fu(v) = Elve'(c + u)] is bounded.

Proof. Every function v € L¥ with norm ||v|[eo < 1 satisfies Is(v) < ||u|/o. Then
we obtain

Elp(c+ [v])] = To(v) + E[p(c)] < 2.

Since u € K¢, we can find A € (0,1) such that E[p(c + su)] < co. We can write

1= NE[pl¢ (c+u)] <E
E
<A

[p(c+u+ (1= N]e])] - Elp(c +u)]
[P(Ae+ 2u) + (1= (e + [o]))] - Elg(c + u)]
Elg(c + 2u)] + (1 = N Elp(c + [o])] — Elgo(c + u)].

Thus the absolute value of f,(v) = E[ve’(c + u)] is bounded by some constant for
”U||q>70 S 1. L]

Lemma 8.9. Assume that ¢(t,-) is continuously differentiable. Then the normaliz-
ing function ¥: K¢ — R is Gateaux-differentiable and

Elve'(c+u — ¥(u)ug)]
Eluo’ (¢ + u — ¥(u)ug)]

oY(u)v = (8.9)

Proof. According to Lemma the expression in defines a bounded linear
functional. Fix functions u € K¢ and v € L¥. In virtue of Proposition [8.4] we can
find e > 0 such that E[p(c 4+ u + Av])] < oo, for every A € [—¢, g]. Define

9\ k) = Elp(e +u+ Mo — kuo)],

for any A € (—¢,¢) and & > 0. Since K¢ is open, there exist a sufficiently small

ap > 0 such that u + Av + afv| is in £? for all a € [—ayg, ap]. We can write

gA+ a, k) — g(A, k)

«

{cp(c +u+ (A4 a)v — kug) — p(c+u+ v — kuo)}].

The function in the expectation above is dominated by the p-integrable function

aio{cp(c+u+)\v+ozo|v| —kug) —p(c+u+Av—kug)}. By the Dominated Convergence
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Theorem,

1
E E{cp(c—ku—l— (A + a)v — kug) — p(c+u+ v — kug) }

— Elvp'(c+u+ v — kuyg)], as a — 0,

and, consequently,

g—i()\, k) = Elvep'(c 4+ u + Av — kug)].

Since ve'(c+ u+ v — kug) is dominated by the p-integrable function |v|¢’ (¢ + u +

elv| — kugp), we obtain for any sequence \,, — A,
Elve'(c + u+ Ao — kug)] — Elow' (¢ + u + M — kug)], asn — oo.

Thus %(A, k) is continuous with respect to A. Analogously, it can be shown that

0
a—Z(/\, k) = —Elugp' (¢ + u + M — kug)],

and %(/\, k) is continuous with respect to k. The equality g(\, k(\)) = Elp(c+u +
Av —k(X)ug)] = 1 defines k() = 1(u+ Av) as an implicit function of A. Notice that
990k ~ 0. By the Implicit Function Theorem, the function k(\) = t(u + Av) is

ok
continuously differentiable in a neighborhood of 0, and has derivative

Ok .« (99/0X)(0,k(0))
X" = " @g/0k) (0, K(0)
Consequently,
C0Y(u+ ), Elue'(c+u—(u)ug)]
oY (u)(v) = I (0) = Eluog’ (¢ + u — (u)ug)]”
Thus the expression in is the Gateaux-derivative of 1. n

Lemma 8.10. Assume that ¢(t,-) is continuously differentiable. Then the diver-

gence Dy does not depend on the parametrization of F¥.

? select

c

Proof. For any w € BY, we denote ¢ = ¢ + w — ¢(w)ug. Given u,v € B

u,v € BY such that (1) = ¢ .(u) and ¢:(0) = ¢,(v). Let 0 BZ — [0,00) be the
normalizing function associated to ¢. These definitions provide

c+u—Y(u)uy = c+u—(u)u,

and

c+v— Y@y =c+ v —Y(v)up.
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Subtracting these equations, we obtain
[~ @) + P@)]uo + (T — &) = [~(v) + Y (w)]uo + (v —u)

and, consequently,

El(v —uw)p'(c +u —(u)uo)]
Eluop'(c +u = P(u)ug)]

Therefore, Dj(u,v) = Dy (u,v). O

Let p = ¢ (u) and ¢ = ¢.(v), for u,v € B?. We denote the divergence between
the probability densities p and ¢ by

D(pllq) = Dy(u,v).

According to Lemma 8.10) D(p||q) is well-defined if p and ¢ are in the same p-family.
We will find an expression for D(p|| q) where p and ¢ are given explicitly. For u = 0,
we have D(p || ¢) = Dy(0,v) = (v), and then

El(—v + (v)u0)e(€)]

P = )

Therefore, the divergence between probability densities p and ¢ in the same ¢-family

can be expressed as

E {cp‘l(p) — <P‘1(q)]
(") (p)

Uo
e
Clearly, the expectation in may not be defined if p and ¢ are not in the same
p-family. We extend the divergence in by setting D(p || q) = oo if p and ¢ are

not in the same ¢-family. With this extension, the divergence is denoted by D, and

D(pllq) = (8.10)

is called the p-divergence. By the strict convexity of ¢(t, -), we have the inequality
o (t,u) —p H(t,v) > (01 (t,u)(u— o) for any u,v > 0, with equality if and only
if w = v. Hence D, is always non-negative, and D, (p || ¢) is equal to zero if and only

if p=gq.

Example 8.11. With the variable k-exponential exp, (¢, u) = exp, (u) in the place

of ¢(t,u), whose inverse ¢~ !(¢,u) is the variable s-logarithm In, (¢, u) = In,g(u),
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we rewrite (8.10]) as

E [lnn(p) - lnn(Q)}

In,, (p)
Dpllq) = : (8.11)
|20
[ln;(p)}
where In,;(p) denotes In,)(p(t)). Since the s-logarithm In,(u) = “5“— has deriva-

lu+u™"

tive In) (u) = +*“=— the numerator and denominator in (8.11)) result in

pn _p—m B ql’wl _ q—n
E|:ll’l;<:,(p) - ll’ln(Q):| —-F 2K 2K _ lE [p“ -p* ¢ - qn]
Inj, (p) 1p"+p” ko Clps+ps prgpr

P 2

Uo QUD
E - | = E [ :| 9
{ln’n(p)] Plpe 4 pr

respectively. Thus (8.11) can be rewritten as

and

E pr—pF ¢ —q"
1P pr 4 pr B pr 4 pr
Dy(pllq) = -

2 ’
)
pr+p"

which we called the xk-divergence.



9 Conclusions and perspectives

Musielak—Orlicz spaces have gained maturity as more applications have been found.
Recently, these spaces have been studied extensively in the context of Lebesgue
and Sobolev spaces with variable exponent. We expect that the application to
Information Geometry will contribute to the pursuing of further advances, and to
the dissemination of these spaces. With the construction of ¢-families of probability
distributions, a new line of research in Information Geometry has been created. A
refined investigation on geometrical aspects of ¢-families is a direct consequence of
this construction.

Standard properties of Musielak—Orlicz spaces were collected in this thesis. Be-
sides our efforts, further progress has to be made. In Section [3.5] where criteria for
embeddings between Musielak—Orlicz spaces were given, we have assumed that the
Musielak—Orlicz functions were finite-valued. Criteria for arbitrary Musielak—Orlicz
functions have to be found. We have not investigated weak compactness in Chapter
Bl The discussions [45] involving weak compactness are restricted to solid sets. We
consider that this restriction is very strong and should be avoided, necessitating fur-
ther investigations. Obviously, not all topics related to Musielak—Orlicz spaces were
included. The choice of the material in Chapters were guided by its usefulness
in future developments of p-families of probabilities distributions. This thesis can
be complemented with isometries of Musielak—Orlicz spaces (see [16], 28, 32] and [17,
Ch. 5]) and interpolation between Musielak—Orlicz spaces (see [39] and [42], §14]).

Some of the subjects in the theory of Musielak—Orlicz spaces has a counterpart
in a p-family context. For example, we can consider inclusions or interpolations
between ¢-families. Some properties of the p-divergence require further investiga-
tions. We do not know how convergence in Luxemburg norm and convergence in
-divergence (the analogue of convergence in Kullback-Leibler divergence) are re-
lated. Moreover, we have to find criteria for the smoothness or uniform convexity of
p-divergences. Its is essential the knowledge of these properties if someone wishes

to develop some estimation technique based on a (-divergence minimization.
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Qo) see (4.9), 49

Qa(-) sce (4.8), 49
S(X) unit sphere in the normed linear space X, 61

u™  positive part of a function u € L®, see (4.1)), 41
u~  mnegative part of a function v € L%, see (4.1]), 41

o
u, — u order convergence, 42
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Morse—Transue function space,
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VP-conditioned, [90]
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p-centered random variable, [I00]
parametrization, [99]

®-function,

positive linear functional,

purely singular functional, [44]
right-directional derivative, [10§]

Simonenko indices,

singular component, [44]

smooth norm, [70]

smooth normed linear space, [70]
smooth point, [70]

strictly convex norm,

strictly convex normed linear space,
support functional, [70]

system of coordinates, [09)
transition map, 09

uniformly convex,

uniformly convex norm, [7§|
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upper p-estimate, [90]

upper p-estimate between Banach lattices,
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variable L? space, [7]
variable exponent function, [7]

variable k-exponential,
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¢-divergence, [97]
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¢-function, 07]

¢-function, [107]

Young’s inequality, []
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