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Resumo

Transmissão/recepção coordenada de múltiplos pontos (do inglês Coordinated Multipoint

Transmission/Recepction-coordinated multipoint (CoMP)) é uma técnica que visa aumentar

a vazão na célula dos sistemas sem-fio das próximas gerações. O processamento conjunto

(do inglês Joint Processing-joint processing (JP)) é um tipo de sistema CoMP que permite

aumentar a performance dos sistemas empregando algoritimos de precodificação baseados

em informação do canal no transmissor (do inglês Channel State Information at the

Transmitter-channel state information at the transmitter (CSIT)).

Atualmente, muitas pesquisas têm focado na redução do feedback e na otimização de

técnicas de precodificação com CSIT parcial. Nossa primeira proposta consiste em generalizar

um modelo de canal estatístico para um sistema CoMP MIMO múltiusuário que leva em

consideração a variação temporal do canal. Derivado de uma medição de canal desatualizada

e das estatísticas do canal (média e covariância), o modelo de CSIT proposto consiste de uma

estimativa do canal e da covariância do erro de estimação, os quais agem como média e

covariância efetiva do canal, respectivamente. Ambos os parâmetros dependem do fator de

correlação temporal do canal, o qual indica a qualidade do CSIT.

Em seguida, considerando que o transmissor tem a média do canal e a correlação

espacial entre as antennas como forma de CSIT, nós propomos dois algoritmos que

maximizam a aproximação de primeira e segunda-ordem da taxa soma média do sistema

CoMP multiple-input multiple-output (MIMO) multiusuário, respectivamente. Os algoritmos

propostos são computacionalmente simples, reduzem as informações de feedback e têm

rápida convergência.

Os resultados de simulação mostram que os algoritmos propostos são quase-ótimos

comparados com a técnica de water-filling iterativo (caso ótimo), e que apresentam perdas

de taxa soma média moderadas para baixos valores de SNR e desprezíveis para altos valores

de SNR.

Palavras-chave: Estações base coordenadas, sistemas MIMO multiusuário, Técnicas de

precodificação, Feedback Limitado.
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Abstract

Coordinated multipoint (CoMP) transmission/reception is a candidate technique for

increasing cell-average and cell-edge throughputs in next-generation wireless systems. Joint

processing (JP) is a branch of CoMP systems which can enhance the systems’ performance,

mainly by employing precoding algorithms based on channel state information at the

transmitter (CSIT).

Many research efforts focus on reducing feedback and optimizing precoding with partial

CSIT. Our first proposal is to generalize a statistical channel model for a multi-user

multiple-input multiple-output (MU-MIMO) CoMP system, which takes into account the

channel time-variation. Derived from a potentially outdated channel measurement and from

the channel statistics (mean and covariance), this proposed CSIT model consists of a channel

estimate and its error covariance, which act as the effective channel mean and covariance,

respectively. Both parameters depend on a temporal correlation factor, indicating the CSIT

quality.

Secondly, considering that the transmitter has the channel mean and the spatial

correlation among the antennas as partial CSIT, we propose two algorithms to maximize the

first and second-order approximations of the ergodic sum rate of a MU-MIMO CoMP system,

respectively. The proposed algorithms are computationally simple, highly reduce feedback

overheads, and have fast convergence.

Simulation results show that the proposed algorithms are near-optimal compared to the

iterative water-filling (optimal) case and present only moderate and negligible sum rate losses

for low and high SNR values, respectively.

Keywords: Coordinated base-station (BS)s, MU-MIMO systems, Precoding techniques,

Limited feedback.
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Nomenclature

In this section, we summarize the conventional notation of this thesis. Firtly, we present a

list of acronyms, followed by an overview of the notation of more general nature. We conclude

with the specific notation for this thesis.

Acronyms

The abbreviations and acronyms used throughout this thesis are listed here. The meaning

of each abbreviation or acronym is indicated once, when it first appears in the text.

BC broadcast channel

BS base-station

CoMP coordinated multipoint

CS/CB coordinated scheduling/coordinated beamforming

CSI channel state information

CSIT channel state information at the transmitter

DPC dirty-paper coding

FUNCAP Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico

i.i.d. independent identically distributed

ICI inter-channel interference

JP joint processing

LOS line-of-sight

MAC multiple access channel

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum likelihood

MMSE minimum mean-square error

MU multi-user

MU-MIMO multi-user MIMO
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NLOS non-line-of-sight

PDF probability density function

QoS quality of service

SDMA space-division multiple access

SIC successive interference cancellation

SIMO single-input multiple-output

SNR signal-to-noise ratio

SVD singular value decomposition

ZMCSCG zero-mean circularly symmetric complex Gaussian

ZF zero-forcing

Notation

The following notation is used throughout this thesis. We use boldface letters to denote

matrices and vectors and italic ones for scalars. Other notational conventions are summarized

as follows:

E{ · } - The expectation operator

C - The set of complex numbers

R - The set of real numbers

CN (x,X) - The circularly symmetric complex Gaussian distribution with mean x and

covariance matrix X

|x| - The absolute value of a scalar x

|X| - The determinant of matrix X

‖X‖ - The Euclidean norm of matrix X

‖X‖F - The Frobenius norm of matrix X

(·)∗ - The complex conjugate operator

(·)T - The transpose operator

(·)H - The complex conjugate transpose (Hermitian) operator

(X)−1 - The inverse of matrix X

IX×X - The identity matrix of dimensions X ×X

tr (X) - The trace of matrix X

vec(X) - The vector obtained by stacking the columns of X

⊗ - The Kronecker product

exp(·) - The exponential function

log(·) - The base 2 logarithm

Specific Notation of the Thesis

We summarize here the symbols and notation that are commonly used in this thesis.
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κ - Ricean Factor

fd - Doppler spread

Pb - Maximum transmit power constraint of base-station (BS) b

K - Number of users

Nb - Number of BSs

Nt - Number of transmit antennas in each BS

Nr - Number of receive antennas in each user equipment

ρ[τ ] - Temporal auto-correlation of the channel at time delay τ

TS - Symbol time interval

NS - Number of symbols inside each simulation block

η - Additive zero-mean circularly symmetric complex Gaussian (ZMCSCG) noise

vector

ηk - Additive ZMCSCG noise vector at the user k of dimensions Nr × 1

σ2
η - Variance of the additive ZMCSCG noise vector η

Hk,b - Channel matrix from BS b to user k of dimensions Nr ×Nt

Hk - Channel matrix of user k

Hk - Channel mean matrix to user k

Ĥk - Channel estimation matrix to user k

Hw - Channel matrix represented by a spatially white (independent identically

distributed (i.i.d.)) ZMCSCG matrix with unit variance

Hk[0] - Channel matrix at initial time 0

Rtk - Transmit covariance matrix per each user k

Rrk - Receive covariance matrix per each user k

Rk[0] - Covariance matrix of the channel per each user k

Rk[n] - Channel auto-covariance matrix per each user k at time n

T̃k,b - Precoding matrix from BS b to user k without considering any power loading

Tk,b - Precoding matrix from BS b for user k

T̃k - Precoding matrix for user k without considering any power loading

xk,b - Transmitted signal from BS b to user k

xk - Transmitted signal for user k

Ωk - Covariance matrix of transmitted signal for user k, xk, in the downlink model

Qk - Covariance matrix of transmitted signal from user k, xk, in the uplink model

Rk - The rate that can be achieved for the user k

Rk,DL - The rate that can be achieved for the user k in the downlink

Rk,UL - The rate that can be achieved for the user k in the uplink

Ek - Estimation error matrix of the channel of user k

Rek - Covariance matrix of the channel estimation error of user k

Θ - Power loading matrix

It is valuable to state that an matrix with the index k (for example Xk) can mean that this

matrix is considered from all Nb BSs to user k in the multi-user (MU) CoMP case; or that is

considered from BS b to user k for MU case, in which the index b was omitted for simplicity.

The used representation will be explained properly when it appears in the text.
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Chapter 1
Introduction

1.1 Background and Motivation

The wireless communication area has required an enormous demand for higher data rates

and enhanced quality of service (QoS) during the last decade under various scenarios. New

types of services, such as streaming multimedia, video telephony and Internet, demanding

different QoS requirements are nowadays offered to customers. Therefore, future wireless

communication systems should be flexible and adaptive to accommodate these various

services. For this reason, the system should be robust to the influence of fading, interference

and hardware impairments.

Since the transmit power and the bandwidth of the wireless system are limited, the

required advances in these systems can be achieved through the use of multiple antennas at

both the transmitter and the receiver. The multiple-input multiple-output (MIMO) technology

has attracted much attention in wireless communications, because it offers significant

increase in transmission rate which has a linear growth with the minimum of the numbers

of antennas at each end [1, 2]. Moreover, MIMO also enhances the link reliability and

improves coverage without additional bandwidth or transmit power [3]. All these features are

achieved when the channel exhibits rich scattering and the channel state information (CSI)

can be accurately known. These initial promises of incredible gains resulted in large research

activities to extend the MIMO concepts to the multi-user (MU) systems.

While single-user MIMO only considers access to multiple antennas that are physically

connected to a specific individual terminal, multi-user MIMO (MU-MIMO) is a set of advanced

MIMO technologies that exploits the availability of multiple independent terminals in order

to enhance the communication capabilities of each individual terminal. MU-MIMO can be

seen as an extension of the concept of space-division multiple access (SDMA) which allows

a terminal to transmit (or receive) signal to (or from) multiple users in the same band,

simultaneously.

The coordinated multipoint (CoMP) transmission/reception is a tool to improve the

coverage of high data rates, the cell-edge throughput and/or to increase system throughput.

It is characterized by the dynamic coordination among multiple geographically separated

transmission points [4].

The benefits of MU-MIMO CoMP systems are enhanced when the transmitter exploits CSI

to process, in an intelligent way, the signal before transmission. This can be accomplished

by precoding techniques, which often rely on the assumption that the transmitter knows

perfectly the MIMO channel matrix [5, 6]. However, this may not be realistic in many
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practical scenarios and considering partial availability of channel state information at the

transmitter (CSIT) in MIMO systems becomes an important issue. This assumption might

have a significant impact on the spectral efficiency that can be reliably obtained by the system.

Some limited feedback multiuser MIMO schemes let each user quantize a function of the

channel coefficients and feed this information back to the transmitter [7,8]. Problems occur,

e.g., when user signals can not be perfectly orthogonalized by precoding due to channel

quantization errors. In order to avoid this, some schemes have been proposed which select, at

the receiver, a quantized precoder from a codebook. Then, only the precoder index is fed back

to the transmitter [9, 10]. However, designing precoder codebooks is a difficult task, which

must take into account the statistical characteristics of the channel. Other approaches focus

on feeding back the mean [11] or the covariance matrix [12] of the channel, which convey

important information about the slow fading and the mean spatial separability of the users,

being a non-complex and effective form of CSIT. Moreover, in a statistical feedback scheme,

better results are obtained if the employed precoder technique exploits the advantages of the

statistical CSIT, i.e., if the used precoder is designed taking into account the availability of

only the channel statistics.

This thesis is devoted to study the availability of statistical channel knowledge at the

transmitter and to design a precoder technique that, using this statistical CSIT, maximizes

some function of the ergodic sum rate in a MU-MIMO CoMP scenario.

1.2 Thesis Contributions

This section summarizes the contribution of this thesis, which is divided into 3 parts:

proposing a statistical channel model; approximating the ergodic sum-rate of the considered

scenario; optimizing the obtained ergodic sum-rate approximation and obtaining near-optimal

input covariance matrices.

1.2.1 Statistical Channel Model

The time-variation of the channel degrades the accuracy of the channel information

obtained at the transmitter due to the delay involved in the process of the channel estimation

at the transmitter using reciprocity or feedback. Therefore, it is interesting to take into

account this channel time-variation in the channel model. The work in [13] proposes to

accomplish this objective. It relies on the stochastic processes and estimation theories.

Derived from a potentially outdated channel measurement and the channel statistics (mean

and covariance), this proposed CSIT model consists of a channel estimate and its error

covariance, acting as the effective channel mean and covariance. Both parameters depend

on a temporal correlation factor, indicating the CSIT quality. Depending on this quality, the

model switches smoothly from perfect to statistical channel information. This proposed CSIT

is applicable to all Gaussian random channels, however it was only proposed for the MIMO

single-user system. Our first contribution is a generalization of the work presented in [13] for

a more general multicell multiuser context, i.e., for the MU-MIMO CoMP channel model.

1.2.2 Approximation of the MU-MIMO CoMP Ergodic Sum-Rate

Some works in the literature propose a transmit scheme that maximizes the sum-rate of

the MU-MIMO channel [14–16]. These works assume that the channel is perfectly known at

the transmitter. This assumption can have a significant impact on the maximum ergodic sum

rate that can be reliably communicated over the channel, but may not be realistic in many

practical scenarios. Our second contribution consists of deriving a first- and second-order

approximation of the ergodic sum rate for a MU-MIMO CoMP system considering that the
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transmitter has access to statistical channel state information (CSI), while the receiver has

access to instantaneous CSI. We use the duality theory [14, 15] to compute the downlink

MU-MIMO CoMP ergodic sum-rate since it states that the achievable sum-rate of the downlink

MU-MIMO channel is equal to the achievable sum rate of the uplink MU-MIMO channel.

1.2.3 Convex Optimization of the Approximated Ergodic Sum-Rate

In the third contribution, we use convex optimization tools to find covariance matrices of

the transmitted signal (known as input covariance matrices) that maximizes the first- and

second-order approximation of the MU-MIMO CoMP ergodic sum-rate. Thus, we propose an

efficient and fast convergent algorithm for obtaining these input covariance matrices.

1.3 Scientific Production and Contributions

During the doctorate, a United States patent regular application related to the proposed

algorithm that maximizes the approximation of the ergodic sum-rate has been filed, with the

following information:

◮ P32276-US2 “Statistical Precoder Design for Coordinated Wireless Systems”, L. M. C.

Sousa, C. C. Cavalcante, T. F. Maciel and A. A. Guimarães.

Some parts of the work presented in this thesis have been published in the following

journal and conferences:

◮ SOUSA, L. M. C.; GUIMARAES, A. A. ; CAVALCANTE, C. C. ; MACIEL, T. F.. “Ergodic

Sum Rate Maximization with Statistical CSIT in a Cooperative MIMO System”. Submitted

to IEEE Transactions on Vehicular Technology.

◮ GUIMARAES, A. A. ; GUERREIRO, I. M. ; SOUSA, L. M. C. ; MOREIRA, D. ; MACIEL,

T. F. ; CAVALCANTE, C. C. . “A (Very) Brief Survey on Optimization Methods for Wireless

Communication Systems”. International Telecommunications Symposium, ITS, 2010,

Manaus

◮ SOUSA, L. M. C. ; CAVALCANTE, C. C. ; MACIEL, T. F. . “Multiuser CoMP Transmit

Processing with Statistical Channel State Information at the Transmitter”. The Seventh

International Symposium on Wireless Communication Systems - ISWCS’2010, 2010,

York, UK.

◮ SOUSA, L. M. C. ; CAVALCANTE, C. C. . “Performance Analysis of Multicell Multiuser

MIMO Precoding Using Partial Knowledge at the Transmitter”. XXVII Simpósio Brasileiro

de Telecomunicações 2009 - SBrT 2009, Blumenau - SC.

The core of this Doctor’s thesis has been developed in the context of three research projects

funded by Ericsson Research, where eight technical reports have been produced and one more

is being written. The list follows below:

◮ CAVALCANTI, F. R. P., CAVALCANTE, C. C., CARDIERI, P., SOUSA, L. M. C., MOREIRA,

R. B., CORREIA, V. D. B. “First Technical Report UFC21 - Precoding Strategies for

Interference Management”, May 2007.

◮ CAVALCANTI, F. R. P., CARDIERI, P., CAVALCANTE, C. C., SOUSA, L. M. C., MOREIRA,

R. B., CORREIA, V. D. B. “Second Technical Report UFC21 - Precoding Strategies for

Interference Management”, November 2007.
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◮ CAVALCANTI, F. R. P., CARDIERI, P., CAVALCANTE, C. C., SOUSA, L. M. C., MOREIRA,

R. B., CORREIA, V. D. B. “Third Technical Report UFC21 - Impact of Outdated CSI on the

Performance of Precoding Algorithms”, May 2008.

◮ CAVALCANTI, F. R. P., CAVALCANTE, C. C., CARDIERI, P., SOUSA, L. M. C., MOREIRA,

R. B., CORREIA, V. D. B. “Final Technical Report UFC21 - Multiuser Precoding for MIMO

Distributed Wireless Systems with Partial Dynamic CSI”, January 2009.

◮ SILVA, Y. C. B., CAVALCANTE, C. C., SOUSA, L. M. C., LOPES, P. R., CORREIA, V.

D. B. “First Technical Report UFC25 - Performance Analysis of Multicell Multiuser MIMO

Precoding using Partial Knowledge at the Transmitter”, August 2009.

◮ SILVA, Y. C. B., CAVALCANTE, C. C., SOUSA, L. M. C., LOPES, P. R., CORREIA, V. D. B.

“Second Technical Report UFC25 - Cooperative MIMO Precoding with Limited Feedback”,

January 2010.

◮ SILVA, Y. C. B., CAVALCANTE, C. C., SOUSA, L. M. C., LOPES, P. R., CORREIA, V. D.

B. “Third Technical Report UFC25 - Cooperative MIMO Precoding with Limited Feedback”,

July 2010.

◮ SOUSA, L. M. C., CAVALCANTE, C. C., CAVALCANTI, F. R. P., FERNANDES, C. E. R.,

GUERREIRO, I. M., SILVA, I. L. J. “First Technical Report UFC31 - A Single-user Analysis

of a Coordinated Transmit Processing with Statistical CSIT ”, December 2010.

1.4 Document Organization

We provide below an outline of the thesis and describe the contribution of each chapter.

Chapter 2 – Discusses the wireless channel characteristics; the MIMO parameters and its

spatial structure; the MU-MIMO channel and its derivations; and the capacity region of

each type of MU-MIMO channel. Moreover, in this chapter, we describe the MU-MIMO

CoMP channel model, the considered input-output signal model and its advantages.

Chapter 3 – From error estimation theory, this chapter proposes a statistical channel

model which considers the channel temporal variation for the considered MU-MIMO

CoMP scenario. The proposed channel model is compared to the case with perfect

channel knowledge at the transmitter using the well-known zero-forcing (ZF) and

minimum mean-square error (MMSE) precoding techniques. Performance results are

also discussed.

Chapter 4 – Finds an approximation of the ergodic sum-rate for the MU-MIMO CoMP

scenario. Next, optimizes the found approximation in order to obtain a near-optimal

input covariance matrix per user using convex optimization tools. Simulation results are

shown and discussed.

Chapter 5 The overall work presented herein is concluded analyzing the results achieved and

pointing out future research directions.
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Chapter 2
Multi-User Multiple-Input

Multiple-0utput (MU-MIMO)

Coordinated Multipoint (CoMP)

Wireless Channel

A good understanding of the multi-user MIMO (MU-MIMO) coordinated multipoint (CoMP)

wireless channel, its key physical parameters and the modeling issues is the goal of this

chapter. Firstly, some concepts related to the variations of the channel response over time

and over frequency are discussed. After that, the multiple-input multiple-output (MIMO)

channel is defined and its spatial characteristics are presented. Next, the MU-MIMO system

is discussed and its downlink and uplink structures are defined. The capacity regions of these

MU-MIMO models and the uplink-downlink duality are studied. Finally, the MU-MIMO CoMP

system is discussed and the input/output channel model used in this thesis is derived, jointly

with some important physical parameters.

2.1 The Wireless Channel

The wireless radio channel places fundamental limitations on the performance of

communication systems. The transmission path between the transmitter and the receiver can

vary from simple line-of-sight (LOS) to one that is severely obstructed by buildings, mountains

and foliages. These various obstructions cause on the transmitted signal reflections on large

surfaces, diffraction on edges and scattering on several objects. Therefore, the received

signal is a superposition of multiple signals arriving from different directions at different

time instants and with different phases and powers. In this section, we review the physical

phenomena that modify the signal power. For a more detailed presentation of this subject,

the reader is refereed to [17].

2.1.1 Path Loss

Path loss is a range-dependent effect and is defined as the difference (in dB) between the

effective transmitted power and the received power, which is due to the distance d between the

transmitter and the receiver [3,17]. In ideal free space, the received signal power is described

by the Friss equation and follows an inverse square law power loss [18]. Several deterministic

and empirical path loss models have been presented for various cellular environments
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(microcells, macrocells, picocells, etc.), such as Okumura-Hata [19,20], Walfisch-Ikegami and

their COST-231 extensions [21] and plane-earth model [17]. A general path loss model can be

given by:

PL = ξd−α, (2.1)

where α is the path loss exponent which indicates the rate at which the path loss increases

with distance, and ξ is a scaling factor that accounts for the average channel attenuation

and may or may not consider the antenna characteristics [17]. The path loss exponent varies

typically from 2 to 6, depending on the propagation environment. For the free space case α is

equal to 2, while for the case of full specular reflections from the ground α is 4. For buildings

and indoor environments α can take values from 4 to 6 [3].

2.1.2 Shadowing

Shadowing is a phenomenon which results from large obstacles blocking the main signal

path between the transmitter and receiver. It is known as large-scale fading and is determined

by the local mean of the signal. The shadowing effects are random and influenced by antenna

heights, operating frequency and features of the propagation environment. A usual shadowing

model follows the log-normal distribution with probability density function (PDF), given by:

p(x) =
1√
2πσ

exp

(
− (log(x)− µ)2

2σ2

)
x > 0 (2.2)

where µ and σ are the mean and the standard deviation of the shadowing’s logarithm,

respectively [3].

2.1.3 Fast Fading

Fast fading describes the rapid fluctuation of the amplitude of a radio signal over a short

period of time or travel distance. It is known as small-scale fading and is caused by the

interference between two or more versions of the transmitted signal which arrive at the

receiver at slightly different times. These waves, called multipath waves, are combined at

the receive antenna to give a resultant signal that can vary widely in amplitude and phase

depending on the distribution of the intensity and relative propagation time of the waves and

the bandwidth of the transmitted signal. The statistical time-varying nature of the received

amplitude is commonly described by the following two fading distributions:

Rayleigh Fading

The simplest probabilistic channel model is based on the assumption that there is a large

number of independent scattered paths and there is no dominant propagation path, i.e.,

there is no LOS between the transmitter and receiver. Applying the central limit theorem,

the channel impulse response can be considered as a complex-valued Gaussian process

irrespective of the distribution of the individual paths. In this non-line-of-sight (NLOS)

configuration, this random process is assumed to have zero mean and phase uniformly

distributed between 0 and 2π radians. The magnitude of the received signal is a Rayleigh

random variable with PDF given by:

p(x) =
2x

Ω
exp

(
−x2

Ω

)
x > 0 (2.3)

where Ω = E{x2} is the average received power [3].

The Rayleigh model is quite reasonable for scattering mechanisms where there are many

small reflectors, but is adopted, primarily for its simplicity, even in typical cellular situations
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with a relatively small number of reflectors.

Ricean Fading

The Ricean fading model is used when a direct, possibly a LOS, path exists and the

assumption of a zero-mean fading process does no longer hold. This model is often defined in

terms of the Ricean factor κ which denotes the ratio of the power in the mean component of

the channel (direct path) to the power in the scattered paths, i.e. [3]:

κ =
‖h‖2F

tr
(
E{h̃h̃H}

) (2.4)

where ‖.‖F is the Frobenius norm, tr (.) is the trace of a matrix, h is the complex channel mean

vector and h̃ is the zero-mean circularly symmetric complex Gaussian (ZMCSCG) channel

vector.

The magnitude of the received signal is a Ricean random variable with PDF given by [3]:

p(x) =
2x(κ+ 1)

Ω
exp

(
−κ− (κ+ 1)x2

Ω

)
J0

(
2x

√
κ(κ+ 1)

Ω

)
x > 0 (2.5)

where Ω = E{x2} and J0 is the zero-order modified Bessel function of the first kind defined as

J0(x) =
1

2x

∫ 2π

0

exp (−x cos θ) dθ x > 0. (2.6)

Although the Ricean PDF has a more complicated form, it is often a better model for fading

than the Rayleigh model.

2.1.4 Channel Selectivity

The presence of reflecting objects and scatterers in the channel creates dissipating effects

which result in the spreading of the signal in different dimensions, affecting significantly

the received signal. These dimensions are time (Doppler spread), space (angle spread) and

frequency (delay spread). Angle spread will not be discussed in this thesis, but the reference

[3] is given for the interested reader.

Temporal Selectivity: Doppler Spread and Coherence Time

The motions of the transmitter, of the receiver or of the scatterers in the channel cause

the temporal selectivity of the channel. These motions lead to a transmitted single tone to be

spread in frequency over a finite spectral bandwidth, an effect known as Doppler shift. This

effect can be captured in the power spectrum of the channel and the variation due to Doppler

shifts are specific to each path and dependent on their angle with respect to the movement

direction of the transmitter/receiver. Different Doppler shifts lead to the so-called Doppler

spread, which is the maximum frequency spread among all Doppler shifts, and is given by:

fd =
v

λc
, (2.7)

where v is the mobile speed and λc is the carrier wavelength.

How fast the channel decorrelates with time is specified by the temporal autocorrelation

function ρ. The most commonly used model for the autocorrelation function is the

Clarke-Jakes’ model, which assumes uniformly distributed scatterers on a circle around the
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antenna, and is given by [22]:

ρ[τ ] = J0(2πfdτ), (2.8)

where τ is the sampling interval.

Higher mobility in a system commonly causes large Doppler spread and faster channel

variation in time. Thus, a larger Doppler spread is associated with a higher temporal

selectivity. A measure of the temporal selectivity is the channel coherence time, defined as the

time interval over which the channel remains strongly correlated. The shorter the coherence

time, the faster the channel changes with time. Since the coherence time is a statistically

defined quantity, an approximated relation to the Doppler spread is:

Tc ≈
1

fd
. (2.9)

It is common to consider a constant such as 2, 4 or 8 in front of fd in this relation; but

there is no single agreed-number [17]. The important property is the inverse-proportionality

between Tc and fd.

Spectral Selectivity: Delay Spread and Coherence Bandwidth

Spectral selectivity is caused by the presence of multiple scaled versions of the transmitted

signal arriving at different time instants at the receiver. An indicator of this selectivity is the

delay spread, defined as time difference between the maximum multipath delay τmax and the

minimum path delay τmin (typically the arrival time of the LOS component). Delay spread

causes frequency selective fading and the range of frequencies over which the channel can

be considered “flat” defines the coherence bandwidth Bc and depends on the form of the

power delay spectrum. Similarly to equation (2.9), the coherence bandwidth is defined as

Bc = 1/τmax. A channel is considered as flat or frequency non-selective if the signal bandwidth

B is significantly small compared to the channel coherence bandwidth, i.e., B ≪ Bc. In this

thesis, only flat fading channels are considered.

2.2 Multiple-input Multiple-output (MIMO) Channel

Multiple-input multiple-output (MIMO) communication techniques have been an important

research area for next-generation wireless systems due to their potential for high capacity,

increased diversity and interference suppression [23].

The MIMO wireless channel is characterized by using multiple antennas at both the

transmitter and the receiver. It generalizes the special cases of having a single antenna at

only one side: multiple-input single-output (MISO) and single-input multiple-output (SIMO).

Therefore, in addition to spanning the temporal and spectral dimensions, a MIMO channel

exhibits a new spatial dimension across the antennas. The channel contains multiple

elements and is often represented in an elegant, compact and unified way by a channel matrix.

2.2.1 Spatial MIMO Channel Modeling

In a system with Nt transmit antennas and Nr receive antennas, the frequency-flat MIMO

channel at discrete time index n can be represented as a matrix H[n] of size Nr ×Nt

H[n] =




h11[n] h12[n] . . . h1Nt [n]

h21[n] h22[n] . . . h2Nt [n]
...

... . . .
...

hNr1[n] hNr2[n] . . . hNrNt [n]




(2.10)
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in which hij [n] is the channel from transmit antenna j to receive antenna i.

Each element hij [n] in a MIMO channel can be modeled as a complex random process.

These elements can be correlated and can have different mean values. Hence, it is possible to

decompose the channel given in the equation (2.10) into a fixed part and a variable part as [3]:

H =

√
κ

1 + κ
H+

√
1

1 + κ
H̃ (2.11)

where H is the complex channel mean matrix, H̃ is a ZMCSCG matrix and κ is the Ricean

factor which represents the ratio between the energy of the mean channel part and the energy

of the random one. The time index n has been omitted for simplicity of notation.

Channel Covariance and the Correlation-based Models

The channel covariance gives information about the spatial correlation among all the

transmit and receive antennas. Thus, it is defined among all NrNt channel elements as being

the positive semi-definite Hermitian matrix given by:

R[0] = E{h̃h̃H} (2.12)

where h̃ = vec(H̃), the vec(.) operator vectorizes a matrix by stacking its columns and E{.} is

the expectation operator. The diagonal elements of the matrix R[0] represent the power gain of

the NrNt scalar channels, and its off-diagonal elements are the cross-coupling between these

scalar channels.

A full-correlation model, disregarding the channel mean (H = 0), is described as [3]

H = unvec(R[0]1/2vec(Hw)) (2.13)

where unvec(.) is the inverse operator of vec(.) and Hw is an Nr × Nt independent identically

distributed (i.i.d.) ZMCSCG matrix with unit variance. This full-correlation model is the most

accurate model but it is not common due to its complexity. For simplicity, the covariance

matrix R[0] is often assumed to have a less general, separable structure called Kronecker

structure [3]. This model assumes that the covariance of the scalar channels seen from all Nt

transmit antennas to a single receive antenna (a row of H) is the same for any receive antenna

(any row) and equal to the Nt ×Nt matrix Rt

Rt = E{h̃T
i. h̃

H
i. } for ∀ i, (2.14)

where h̃i. is the i-th row of the matrix H̃ with i = 1, ..., Nr.

Similarly, the covariance of the scalar channel seen from a single transmit antenna to all

Nr receive antennas (a column of H) is assumed to be the same for any transmit antenna (any

column) and equal to the matrix Rr of dimensions Nr ×Nr

Rr = E{h̃.jh̃
H
.j } for ∀ j, (2.15)

where h̃.j is the j-th column of the matrix H̃ with j = 1, ..., Nt.

In this case, the channel covariance matrix can be decomposed by both complex Hermitian

positive semidefinite matrices Rt and Rr as:

R[0] = Rt
T ⊗Rr, (2.16)
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where the operator ⊗ means the Kronecker product [24]. The Kronecker model is satisfied

for small number of antennas or large antenna spacing [17] and it will be considered in the

scenario of this thesis.

Channel Mean and the Factor κ

The channel mean is the fixed component of the channel, usually corresponding to a LOS

propagation path or a cluster of strong paths. The mean of a MIMO channel is the complex

matrix H of size Nr ×Nt obtained as [3]

H =
E{H}√

κ
1+κ

. (2.17)

The elements of the mean can have different amplitudes and arbitrary phase, caused by

the spatial selectivity. The strength of a channel mean can be quantified by the Rician κ

factor. It is defined as the ratio of the power in the channel mean and the average power in

the channel variable component. In Section 2.1 the Ricean factor was defined in (2.4) for a

channel vector, here we have the definition for a MIMO channel matrix [17]:

κ =
‖H‖2F

tr (R[0])
. (2.18)

The κ factor can take any real value between 0 and infinity. When κ = 0, the channel has the

Rayleigh distribution. When κ → ∞, the channel becomes deterministic. Measurements of

fixed broadband channels have shown that the κ factor can take values from 0 up to 30dB in

practice, and it tends to decrease with increasing distance between the transmitter and the

receiver [25].

The channel mean is assumed to be generated in this thesis as:

H = diag







a0(θc)

a1(θc)
...

aNr(θc)







· SNr×Nt · diag







a0(θs)

a1(θs)
...

aNt(θs)







(2.19)

where θs and θc are the angle between the BS and the user with respect to transmit and

receive array broadside direction, respectively, and am(θ) = exp(jπ(m− 1) sin(θ)). The matrix S

is a matrix composed by 1’s and −1’s and with rank equal to min(Nt, Nr). Thus, the matrix S

has the role to condition the channel mean H, i.e., to make the matrix H be a full rank one [3].

The channel given in equation (2.11) can then be written considering the Kronecker

channel model and the mean channel matrix as:

H =

√
κ

1 + κ
H+

√
1

1 + κ
Rr

1/2HwRt
1/2. (2.20)

where Rt
1/2 is the matrix square-root of Rt, such that, Rt = Rt

1/2Rt
1/2. Analogously, Rr =

Rr
1/2Rr

1/2.

2.3 Multi-user (MU) MIMO Channel

Multi-user MIMO (MU-MIMO) channels are a set of advanced MIMO channels that

allow to exploit the availability of multiple independent terminals in order to enhance the

communication capabilities of each individual terminal. There are two types of multi-user
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(MU) channels: the uplink and the downlink channel. In the uplink MU channel, many

transmitters (users) send signals to one receiver (base-station (BS)) in the same frequency

band. It is also known as multiple access channel (MAC) or reverse channel. The downlink

MU channel has one transmitter (BS) sending signals to many receivers (users) and it is also

known as broadcast channel (BC) or forward channel. In the downlink, the transmit antennas

can cooperate at the BS to mitigate the MU interference and, in the uplink, this processing

is performed at the receiver (BS). Next, we analyze both MU-MIMO channels and their main

features.

2.3.1 Downlink Multi-user MIMO Channel

Consider the communication between a BS b equipped with Nt transmit antennas and K

active users, where each active user k is equipped with Nr receive antennas. The set of active

users is defined by the users simultaneously downloading or uploading packets during one

given scheduling window.

In the downlink MU-MIMO model, the BS b transmits simultaneously to K users as shown

in Figure 2.1. Assuming a frequency-flat channel, the signal yk ∈ CNr×1 received by each user

k can be written as:

yk = Hk,bx+ ηk for k = 1, . . . ,K (2.21)

where ηk ∈ CNr×1 is the additive ZMCSCG white noise vector at the receiver k with covariance

matrix σ2
ηI, Hk,b ∈ CNr×Nt represents the frequency-flat channel matrix from BS b to user k and

x ∈ CNt×1 is the signal vector transmitted by BS b. The signal x is composed by signal desired

by all users, i.e., x =
∑K

k=1 xk with xk being the signal desired by user k. The covariance matrix

of the transmitted signal in the downlink model is also known as downlink input covariance

matrix and it is given by Ω = E{xxH}. The input covariance matrix is subject to a power

constraint tr (Ω) ≤ Pb, where Pb is the maximum transmit power constraint of BS b.

+

+

+

...

x

H1,b

H2,b

HK,b

η1

η2

ηK

y1

y2

yK

Figure 2.1: System model of the downlink MU-MIMO channel.

2.3.2 Uplink Multi-user MIMO Channel

In the uplink MU-MIMO model, the K users transmit simultaneously to BS b as shown in

Figure 2.2. The received signal y ∈ CNt×1 at BS b is given by

y =
K∑

k=1

HH
k,bxk + η, (2.22)
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where xk ∈ CNr×1 is the k-th user signal vector, Hk,b ∈ CNr×Nt represents the frequency-flat

channel matrix from BS b to user k on the downlink model and η ∈ CNt×1 is the additive

ZMCSCG white noise vector at the BS with variance σ2
η. We have considered that the uplink

channel matrix is the dual corresponding downlink channel matrix, thus the channel matrix

in the uplink model is the Hermitian of the channel matrix in the downlink model HH
k,b.

This consideration will be taken along all thesis and its impact will be analyzed later. The

covariance matrix of the transmitted signal by user k in the uplink model is also known as

uplink input covariance matrix and it is given by Qk = E{xkx
H
k }. These input covariance

matrices are subject to an individual power constraint tr (Qk) ≤ Pk, where Pk is the maximum

transmit power of user k.

+

...
x1

x2

xK

HH
1,b

HH
2,b

HH
K,b

η

y

Figure 2.2: System model of the uplink MU-MIMO channel.

In the MU-MIMO channel with K users, the capacity is characterized by a K-dimensional

rate region, where each point is a vector of achievable rates by all K users simultaneously [26].

This capacity region defines the limit of error-free communications given certain channel

characteristics and it is used as the ultimate measure of channel capacity. In the following,

we study the capacity region for the two MU-MIMO channels: downlink and uplink. For

simplicity of notation, we consider in the next two subsections that the channel matrix from

BS b to user k is only denoted by Hk, since there is only one BS. Moreover, from this point

forward, we consider that the noise power is equal to unity, i.e., σ2
η = 1.

2.3.3 Capacity Region of the Uplink MU-MIMO Channel

Firstly, we denote Rk,UL as being the rate that can be reliably (error-free) maintained for

the user k in the uplink channel model given in bits per second per Hertz (bps/Hz). We

assume Gaussian signaling for each user and consider joint decoding of the users signals,

i.e., decoding all signals simultaneously through maximum likelihood (ML) decoding. The

uplink MU capacity region with joint decoding and individual power constraints P1, . . . , PK on

each user has been shown to satisfy [15] [27]:

CUL(P;HH
1 ,HH

2 , . . . ,HH
K) =

K∑

k=1

Rk,UL ≤ max
{Qk}K

k=1
;Qk�0;tr(Qk)≤Pk

log

∣∣∣∣∣INt +

K∑

k=1

HH
k QkHk

∣∣∣∣∣ (2.23)

where |X| represents the determinant of the matrix X, P = [P1, . . . , PK ] is the set of powers and

CUL(P;HH
1 ,HH

2 , . . . ,HH
K) is the maximum sum rate of the uplink MU-MIMO channel. Each set
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of covariance matrices determines a K-dimensional polytope and the uplink capacity region is

equal to union of all such polytopes, in which the union is only performed over all covariance

matrices satisfying the power constraints. For a case with 2 users with a single antenna, the

capacity region is a pentagon as shown in Figure 2.3 [3]. Along the bold line the sum rate

(R1,UL + R2,UL) is constant and is the maximum achievable sum rate. Every point along this

line is achieved by each user transmitting at the maximum available power. The corner points

of the pentagon can be achieved by successive decoding [3]. In the lower corner point A, user

1 transmits at full rate R1,UL = log(1 + tr (Q1) ‖h1‖2F ), thus assuming no interference. User 2

transmits assuming that the signal from user 1 is additional noise. The same procedure can

be performed to the upper corner B, user 1 transmits treating user 2 as additional noise and

user 2 transmits with full rate equal to R2,UL = log(1+ tr (Q2) ‖h2‖2F ). All other points along the

bold line can be achieved by time-sharing between the two schemes [3].

R2,UL

R1,UL

B

A

R1,UL +R2,UL ≤ log |I2 + tr (Q1)h1h
H
1 + tr (Q2)h2h

H
2 |

Figure 2.3: Capacity region for the uplink MU-MIMO channel when the receivers have a single antenna.

If the decoding uses minimum mean-square error (MMSE) with successive cancellation, as

reported in [28], the capacity region of this channel now satisfies:

CUL(P;HH
1 ,HH

2 , . . . ,HH
K) =

K∑

k=1

Rk,UL ≤ max
{Qk}K

k=1
;Qk�0;tr(Qk)≤Pk

K∑

k=1

log

∣∣∣I+
∑K

i=k H
H
i QiHi

∣∣∣
∣∣∣I+

∑K
i=k+1 H

H
i QiHi

∣∣∣
(2.24)

considering that the user 1 is decoded first, then the user 2 is decoded and so on.

The objective function in (2.23) is a convex function of the uplink input covariance matrices

Qk and the constraints are separable because there is an individual trace constraint on each

correlation matrix Qk. In such situations, it is generally sufficient to optimize with respect to

the first variable while holding all other variables constant, then optimize with respect to the

second variable, and so on, in order to reach a globally optimum point [29].

In [16], the authors consider the MMSE receiver with successive interference cancellation

(SIC) instead of the ML receiver. As previously mentioned, this receiver decodes the users’

signals successively and the user to be decoded treats all the other users as interference.

Moreover, it subtracts out the signal transmitted by the users already decoded from the

received signal. In that work, the authors have proposed a block-coordinated ascent algorithm

to reach the maximum sum rate of the uplink MU-MIMO channel. This algorithm consists of

optimizing (2.24) with respect to the first variable while holding all other variables constant,

then optimize with respect to the second variable, and so on, until reaching a globally optimum

point. The work in [16] proposed to evaluate the sum rate maximizing the covariance matrix

of any user through the single-user water-filling of its own channel with noise equal to the
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actual noise and interference from the other K − 1 transmitters. Next, we study the capacity

region of the downlink MU-MIMO channel.

2.3.4 Capacity Region of the Downlink MU-MIMO Channel

The sum rate capacity of a downlink MU-MIMO Gaussian channel CDL for multiple users

having multiple antennas each has been shown by Sato in [30] to satisfy:

CDL ≤ CSato = min
σ2
ηI≻0

(
max

tr(Ω)<Pb

log
|σ2

ηI+HΩHH |
|σ2

ηI|

)
(2.25)

where H =
[
HT

1 HT
2 . . . HT

K

]T
is the matrix composed by channel matrices Hk of all K

users and Ω is the downlink input covariance matrix. This equation is known as Sato’s upper

bound on the capacity region of general broadcast channels which considers cooperation

among users. As already mentioned, since in the MU-MIMO system there is only one BS, we

omit the index b for simplicity of notation.

An achievable capacity region for downlink MU-MIMO channels has been derived in [31]

using Costa’s dirty-paper coding (DPC) [32], in which the authors demonstrate that the

achievable rates meet the Sato upper bound. The basic idea of the DPC is that if the

transmitter has perfect, non-causal channel state information (CSI) regarding an additive

Gaussian interference, then the capacity of the channel is the same as if there was no additive

interference. The main point is that the transmitter can subtract the known interference

before the transmission of the desired signal, but in such way that the transmit power is not

increased. Considering successive decoding and that the user 1 is encoded first, followed by

user 2 and so on, then the rate Rk,DL achieved by user k is given by:

Rk,DL = log

∣∣∣∣∣I+Hk

(
∑
j≥k

Ωj

)
HH

k

∣∣∣∣∣
∣∣∣∣∣I+Hk

(
∑
j>k

Ωj

)
HH

k

∣∣∣∣∣

, for k = 1, . . . ,K. (2.26)

where Ωk = E{xkx
H
k } is the input covariance matrix of the signal desired by user k since

x =
∑K

k=1 xk is the transmitted signal.

If the consideration now is that the user K is encoded first, followed by user K − 1 and so

on, then the achievable rate Rk,DL is now given by:

Rk,DL = log

∣∣∣∣∣I+Hk

(
∑
j≤k

Ωj

)
HH

k

∣∣∣∣∣
∣∣∣∣∣I+Hk

(
∑
j<k

Ωj

)
HH

k

∣∣∣∣∣

, for k = 1, . . . ,K. (2.27)

Therefore, in [31], the authors state that the capacity region is the convex hull of the union

of all such rates over all positive semi-definite correlation matrices satisfying the sum power

constraint:

CDL(H1, . . . ,HK , Pb) = max

{Ωk}K
k=1

;Ωk�0,
K
∑

k=1

Tr(Ωk)≤Pb

∑

k

Rk,DL. (2.28)

This optimization problem is hard to solve, since the sum rate equation is in general neither

a concave nor a convex function of the input covariance matrices. Thus, a numerical solution

for this problem requires a brute force search over the entire space of all input covariance
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matrices that meets the sum power constraint. For a channel with two user and single

antenna each, the capacity region is shown in Figure 2.4 [3].

R2,DL

R1,DL

Figure 2.4: Capacity region for the downlink MU-MIMO channel considering two users.

In [15] and [33], the authors have shown the existence of duality between the uplink and

the downlink. They have established that the downlink MU-MIMO capacity region is the same

as the capacity region of the corresponding uplink MU-MIMO channel with the transmit power

constraint of the downlink channel translated to the sum of powers in the uplink. The authors

have named their result a duality connection. This is also equivalent to saying that the sum

rate of the downlink MU-MIMO channel is equal to the sum rate of the dual uplink MU-MIMO

channel subject to the sum power constraint P , i.e.:

CDL(H1, . . . ,HK , Pb) = CUL(H
H
1 , . . . ,HH

K , Pb), (2.29)

where Pb, for the uplink channel model, is the sum of the power constraints of each user k,

i.e., Pb =
∑K

k=1 Pk.

This equivalence between the uplink and downlink channel has been analyzed in many

different situations. In [2] the authors have shown that the capacity of a single-user channel

is unchanged when the role of transmitters and receivers is interchanged. In the case of

the downlink of a multiple antenna system employing simple linear beamforming followed

by single-user receivers, the works in [34] and [35] show that the optimal choice of transmit

beamvectors is closely related to a virtual uplink problem. Other works in [33] and [36] show

that the capacity region of degraded downlink Gaussian channel is the same as the capacity

region of the corresponding uplink channel with the transmit power constraint of the downlink

channel translated to the sum of powers in the uplink. In the sequel, the duality between the

uplink and downlink channel is detailed.

2.3.5 Duality Between Downlink MU-MIMO Channel and Uplink MU-MIMO Channels

Figure 2.5 shows the downlink MU-MIMO channel with its dual uplink MU-MIMO channel,

which is formed by reversing the roles of the transmitters and receivers. Thus, the dual uplink

MU-MIMO channel is a K-user MU-MIMO uplink channel where each of the dual uplink

channels is the conjugate transpose of the corresponding downlink channel.

From Figure 2.5, we can state the main differences between the uplink and the downlink

channel:

i. In the downlink there is a single power constraint associated with the BS (transmitter),

whereas in the uplink a power constraint is associated with each user (transmitter).
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+
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+
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x

H1

H2

HK

η1

η2

ηK

y1

y2

yK

x1

x2

xK

HH
1

HH
2

HH
K

η

y

Downlink MU Channel Uplink MU Channel

Figure 2.5: System model of the downlink MU-MIMO (left) and uplink MU-MIMO (right) channels.

ii. The additive noise in the downlink is associated with each receiver (one noise vector for

each receiver) and in the uplink the additive noise is only one vector since we have one

receiver.

iii. In the downlink, both signal and interference per each user travel through the same

channel, whereas in the uplink these signals travel through different channels

Since the downlink and uplink channels look like mirror images of each other, the duality

between these channels can be considered and the capacity region of either channel can be

obtained from the capacity region of the other.

Next, we obtain the transformation that maps the uplink input covariance matrices into

the downlink input covariance matrices [14]. With this transformation, we can use the fact

that the achievable sum rate of the downlink MU-MIMO channel can be obtained from the

achievable sum rate of the uplink MU-MIMO channel.

Assume that in the downlink the user K is encoded first, then the user K − 1 is encoded

and so on; we assume that in the uplink the users are decoded in the reverse order, i.e., the

user 1 is decoded first, next the user 2 is decoded, and so on. Then, from equation (2.24), we

can write the rate Rk,UL achieved by user k in the uplink as [15]:

Rk,UL = log

∣∣∣INt +
∑K

i=k H
H
i QiHi

∣∣∣
∣∣∣INt +

∑K
i=k+1 H

H
i QiHi

∣∣∣
, for k = 1, . . . ,K.

= log

∣∣∣INt +
∑K

i=k+1 H
H
i QiHi +HH

k QkHk

∣∣∣
∣∣∣INt +

∑K
i=k+1 H

H
i QiHi

∣∣∣
, (2.30)

where IM is the identity matrix of dimensions M ×M .

Considering that log |A+B|
|A| = log |I+A−1B| and using this result in (2.30) we have:

Rk,UL = log

∣∣∣∣∣∣∣
INt +


INt +

K∑

j=k+1

HH
j QjHj




−1

HH
k QkHk

∣∣∣∣∣∣∣
, for k = 1, . . . ,K. (2.31)

For the downlink channel and from equation (2.27) we can write the rate Rk,DL achieved by



2.3. Multi-user (MU) MIMO Channel 17

user k as:

Rk,DL = log

∣∣∣∣∣INr +Hk

(
k∑

j=1

Ωj

)
HH

k

∣∣∣∣∣
∣∣∣∣∣INr +Hk

(
k−1∑
j=1

Ωj

)
HH

k

∣∣∣∣∣

, for k = 1, . . . ,K.

= log

∣∣∣∣∣INr +Hk

(
k−1∑
j=1

Ωj

)
HH

k +HkΩkH
H
k

∣∣∣∣∣
∣∣∣∣∣INr +Hk

(
k−1∑
j=1

Ωj

)
HH

k

∣∣∣∣∣

,

= log

∣∣∣∣∣∣∣
INr +


INr +Hk




k−1∑

j=1

Ωj


HH

k




−1

HkΩkH
H
k

∣∣∣∣∣∣∣
. (2.32)

Let us define the following auxiliary matrices:

Ak = INr +Hk




k−1∑

j=1

Ωj


HH

k , (2.33)

and

Bk = INt +

K∑

j=k+1

HH
j QjHj . (2.34)

Substituting (2.33) and (2.34) into (2.32) and (2.31), we can write:

Rk,UL = log
∣∣INt +B−1

k HH
k QkHk

∣∣

= log
∣∣∣INt +B

−1/2
k HH

k QkHkB
−1/2
k

∣∣∣

= log
∣∣∣INt +B

−1/2
k HH

k A
−1/2
k A

1/2
k QkA

1/2
k A

−1/2
k HkB

−1/2
k

∣∣∣ (2.35)

and

Rk,DL = log
∣∣INr +A−1

k HkΩkH
H
k

∣∣

= log
∣∣∣INr +A

−1/2
k HkΩkH

H
k A

−1/2
k

∣∣∣

= log
∣∣∣INr +A

−1/2
k HkB

−1/2
k B

1/2
k ΩkB

1/2
k B

−1/2
k HH

k A
−1/2
k

∣∣∣ (2.36)

In equations (2.35) and (2.36), the matrices Bk and Ak represent the interference

experienced by user k in the uplink and downlink MU-MIMO channels, respectively.

We define the channel matrix taking into account the interference effect as the effective

channel matrix. From the equation (2.35), we can treat B−1/2
k HH

k A
−1/2
k as the effective channel

of the uplink system and A
1/2
k QkA

1/2
k as the input covariance matrix of this effective uplink

channel. We can note from (2.36) that A−1/2
k HkB

−1/2
k is the effective downlink channel and it

is equal to the Hermitian of the effective uplink channel. Thus, we can use the result shown

in literature that, in a point-to-point system, the rate in the uplink and downlink are the

same [2]:

Rk,DL = Rk,UL. (2.37)

Moreover, we can use the transformation of the correlation matrices for the point-to-point
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system in order to transform the uplink MU-MIMO input correlation matrices Qk into

downlink MU-MIMO input correlation matrices Ωk. Firstly, we need to define the concept

of flipped channel. In [15], the authors state that the capacity of a system Y1 with effective

channel Hef is equal to the capacity of another system Y2 with effective channel HH
ef , in which

this channel HH
ef is called the flipped channel. Applying this result in the rate of the uplink

MU-MIMO channel (equation (2.35)), we have that the flipped channel is A
−1/2
k HkB

−1/2
k and

the input covariance matrix of the flipped case is defined as the matrix of dimension Nt ×Nt

A
1/2
k QkA

1/2
k . Thus, we can write:

Rk,UL(Hj) = Rk,UL(Hj) = log
∣∣∣INr +A

−1/2
k HkB

−1/2
k A

1/2
k QkA

1/2
k B

−1/2
k HH

k A
−1/2
k

∣∣∣ . (2.38)

Substituting (2.36) and (2.38) into (2.37), we have:

Rk,UL = Rk,DL

log
∣∣∣INr +A

−1/2
k HkB

−1/2
k A

1/2
k QkA

1/2
k B

−1/2
k HH

k A
−1/2
k

∣∣∣ = log
∣∣∣INr +A

−1/2
k HkΩkH

H
k A

−1/2
k

∣∣∣

It is possible to notice that if we chose the downlink input covariance matrix of user k as

being:

Ωk = B
−1/2
k A

1/2
k QkA

1/2
k B

−1/2
k (2.39)

we can guarantee that equality of the rates Rk,UL = Rk,DL.

Defining the singular value decomposition (SVD) of the effective uplink channel

as B
−1/2
k HH

k A
−1/2
k = UefkΣefkV

H
efk

, the input covariance matrix of the flipped channel

A
−1/2
k HkB

−1/2
k is equal to A

1/2
k QkA

1/2
k = UefkV

H
efk

A
1/2
k QkA

1/2
k VefkU

H
efk

[15]. Substituting this

result in equation (2.39), we have that the downlink input covariance matrix can be written

as a function of the uplink input covariance matrix as [14]:

Ωk = B
−1/2
k UefkV

H
efkA

1/2
k QkA

1/2
k VkU

H
k B

−1/2
k , (2.40)

where these input covariance matrices achieve the same rates under the same sum power

constraint.

Since we have the transformation that maps the uplink input covariance matrices obtained

into the downlink input covariance matrices, we can use the duality theorem to evaluate the

achievable sum rate of the downlink MU-MIMO channel, i.e,:

CDL = CUL

CDL = max
{Qk}K

k=1
;Qk�0,

∑

k tr(Qk)≤Pb

log

∣∣∣∣∣INt +

K∑

k=1

HH
k QkHk

∣∣∣∣∣ , (2.41)

where the optimization is performed over the uplink input covariance matrices Qk, k = 1, . . . ,K

subject to the same sum power constraint Pb. This function is a convex function of the

uplink input covariance matrices Qk [37]. Thus, we can obtain the uplink input covariance

matrices through convex optimization tools, and after that, perform the transformation in

(2.40) which maps the obtained uplink input covariance matrices into the desired downlink

input covariance matrices [14].

As already commented, the work in [16] proposed a iterative waterfilling algorithm to

compute the input correlation matrices of the uplink MU-MIMO channel with individual
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power constraints. The proposed solution consists in optimizing the sum rate of the uplink

MU-MIMO channel with individual power constraints with respect to the first variable while

holding all other variables constant, then optimizing with respect to the second variable and

so on, until reaching a globally optimum point. This is referred to as the block-coordinate

ascent algorithm [38].

However, in order to compute the sum rate of an uplink MU-MIMO channel subject to

a sum power constraint, i.e., computing (2.41), the water-filling procedure of the individual

power constraint problem can not be used. In the individual power constraint problem, the

water level of each user is determined individually and can differ from one user to another.

However, in the sum power constraint problem, the water level of all users must be equal and

we must update all covariances simultaneously to maintain a constant water-level. Therefore,

the algorithm must update all K covariance matrices simultaneously during each step based

on the covariance matrices from the previous step. The work in [14] finds an iterative

waterfilling algorithm to solve the optimization problem of the uplink MU-MIMO channel with

sum power constraint. The algorithm is complex and requires numerous calculations of SVDs.

Moreover, they consider a perfect channel state information at the transmitter (CSIT).

Following, we present the CoMP structure which is the scenario considered in the present

thesis.

2.4 Coordinated Multipoint (CoMP) Multiuser MIMO Channels

CoMP transmission/reception has been considered as a promising approach to

improve coverage, cell-edge throughput, and/or system efficiency through suppressing the

inter-channel interference (ICI) [4]. CoMP was originally proposed to extend communication

coverage in environments hostile to radio propagation, such as in mines or tunnels. Saleh

was the first to apply CoMP in the context of cellular mobile communications [39], and recent

studies have shown that in addition to increasing coverage, CoMP can also reduce transmit

power and hence co-channel interference and, as a result, increase system capacity [40] [41].

CoMP transmission can be categorized into two classes: 1) joint processing (JP), where data

are simultaneously transmitted from multiple transmission points to a single user in order

to improve the received signal quality and/or actively cancel interference from other users,

and; 2) coordinated scheduling/coordinated beamforming (CS/CB), in which data are only

available at the serving cell, but user scheduling/beamforming decisions are made with

coordination among cells belonging to the CoMP group [4].

In JP CoMP systems, besides the serving cell, the cells in the coordination group are

normally chosen as the ones that create the highest interference to the user. By this approach,

the received signal levels will be improved and, at the same time, the ICI level will be decreased

since part of it has been changed to a useful signal. A gain from JP CoMP is therefore obtained,

not only by suppressing the interference sources but also by benefiting from it. Moreover, due

to a higher number of transmit antennas involved in the joint transmission processing, better

diversity gains can also be obtained.

Input-Output Signaling Model

In this thesis, the scenario considers the downlink of a MU-MIMO CoMP communication

system composed by Nb base stations (BSs) and K cochannel users arbitrarily distributed

within the system coverage area. Each BS b is equipped with Nt transmit antennas and

each user k with Nr receive antennas. The BSs are connected through high capacity links

(referred to as the backbone) to a central processing unit, which jointly processes the signals.
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This characterizes a CoMP structure and, for simplicity, we will consider an ideal delayless,

infinite-capacity backbone to connect all BSs to the central unit. Figure 2.6 shows this

representation for a case with Nb = K = 3.

...

...

...

...

...

...

BS 1

BS 2

BS 3
Hk,1

Hk,2

Hk,3

User k

BS 2

BS 3

BS 1

Figure 2.6: MU-MIMO CoMP system model with Nb = K = 3.

Moreover, the channel is considered frequency-flat and its spatial characteristics assume

Kronecker-structured covariances with an NbNt × NbNt transmit covariance matrix Rtk and

an Nr×Nr receive covariance matrix Rrk for each user k. Considering this, the channel matrix

Hk[n] from all BSs to MS k at time n can be modeled as:

Hk[n] =

√
κ

1 + κ
H̄k +

√
1

1 + κ
Rr

1/2
k Hwk[n]Rt

1/2
k , (2.42)

where Hk =
[
Hk,1 Hk,2 . . . Hk,Nb

]
Nr×NbNt

is the joint channel matrix from all BSs to

user k with Hk,b being the channel matrix from BS b to user k and Hwk[n] is an Nr × NtNb

small-scale fading channel matrix represented by an i.i.d. (spatially white) ZMCSCG matrix

with unit variance.

As already mentioned, for JP CoMP systems, the transmit signal intended for each user k

is spread over all Nb BSs. Omitting the time index n for simplicity of notation, the transmit

signal for user k can be expressed as xk =
[
xT
k,1 xT

k,2 . . . xT
k,Nb

]T
, where xk,b is the signal

transmitted from BS b to user k. The signal yk received at user k is

yk = Hkxk +
∑

j 6=k

Hkxj + ηk, (2.43)

where ηk refers to a ZMCSCG noise vector with identity-covariance.

As we can observe in (2.43), the signal received by user k involves one term dependent

on the desired signal xk and another dependent on the interfering signals xj . In this work,

we assume that the transmitter knows the propagation delay for each BS-user pair. Thus,

in (2.43), the signal xk transmitted from all BSs to user k can be pre-compensated for the

different delays to user k associated with each BS. However, xj in the received signal by user
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k can not be pre-compensated in the joint transmission, thus we have that xj is received by

user k in an asynchronous way. Since the user k is not interested in correctly detecting the

streams intended to user j (i.e. decoding correctly xj ), we can simply view xj as the data

of some virtual synchronous interfering users. Some recent works have considered that this

interference signal is fundamentally asynchronous [40, 42]. These works analyze the impact

of this asynchronism on existent precoding algorithms that ignore this behavior and suggest

how to mitigate it. In this thesis we prefer to consider a synchronous interference and leave

the study with the asynchronous one for future work. Moreover, this consideration is also

often used in literature [43,44].

Let Lk denote the number of data streams intended for user k. For each user k, an NtNb×Lk

precoding matrix Tk =
[
TT

k,1 TT
k,2 . . . TT

k,Nb

]T
is designed based on the characteristics of

Hk, where Tk,b is the Nt × Lk matrix representing the precoder of BS b for user k. Thus, the

transmitted signal from all BSs to user k is xk = Tksk, where sk =
[
sk,1 sk,2 . . . sk,Lk

]T

contains the data streams intended for user k. For simplicity, streams are assumed to have

i.i.d. zero-mean unit-variance complex Gaussian entries, i.e., Gaussian signaling is assumed.

Since we consider a CoMP structure, each BS will have its own power constraint. Thus,

we consider that:

E

{
K∑

k=1

tr
(
xk,bx

H
k,b

)
}

= tr

(
K∑

k=1

E{Tk,bT
H
k,b}

)
=

K∑

k=1

tr (Ωk,b) 6 Pb b = 1, 2, . . . , Nb, (2.44)

where Pb is the power constraint of BS b and Ωk,b = E{Tk,bT
H
k,b} is the downlink input

covariance matrix of user k and BS b.

This scenario is the considered one in this thesis and it is of great interest due to some

advantages:

◮ Assuming JP in a MU-MIMO system, the overall transmit array is distributed among

the cooperative BSs. In the resulting channel for user k, all subchannel matrices

corresponding to the transmission from each BS to user k (Hk,b with b = 1, . . . , Nb) are

independent of each other. Thus, the total number of independent links is given by
∑Nb

b=1 rank(Hk,b) which is assured to be at least equal to Nb. Therefore, if Nb ≥ Nr, the

joint channel matrix Hk of user k will always be full-rank. Moreover, even if local fading

occurs at each BS, the channel conditioning will not be greatly degraded as the fading

among different transmit antennas at different BSs is still uncorrelated.

◮ Shadowing is a position-dependent factor and thus transmit antennas placed at the same

BS are generally subject to the same attenuation. For single-cell processing, strong

shadowing conditions may degrade the capacity significantly. On the other hand, JP

CoMP structures can offer macrodiversity protection for shadowing impairments as BSs

are independent of each other and consequently there is a much lower probability that

all NbNt antennas be under deep fading compared to the case where the entire antenna

array is co-located at the same BS.

Thus, the considered CoMP scenario is interesting due to the consideration of the

heterogeneous nature of the networks to be deployed and due to the diversity of sources

obtained with the JP scheme.
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2.5 Summary

In this chapter the fundamental characteristics of the wireless channel were overviewed.

In the sequel, we discussed about the multiple-input multiple-output (MIMO) parameters and

its spatial characteristics, such as the channel mean and the channel covariance. After that,

we detailed the multi-user MIMO (MU-MIMO) channel, its categories: uplink and downlink

and the capacity region for each category of the MU-MIMO channel. Moreover, the duality

theorem between the uplink MU-MIMO and the downlink MU-MIMO was explained. Finally,

we described the MU-MIMO coordinated multipoint (CoMP) channel model, the input-output

signal model that will be considered in this thesis and its advantages. In the next chapter, a

channel model considering the channel statistics will be proposed for our considered scenario.
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Chapter 3
Multi-user MIMO CoMP Channel

Model

A major challenge in wireless communication is the time-variation of the channel. This

time-variation creates difficulty in obtaining channel information, which is required for

achieving the best performance. While the channel can be measured directly at the receiver

with sufficient accuracy, the transmitter must obtain channel information indirectly, using

either reciprocity or feedback. In a time-varying channel, the delay involved in such a process

can degrade the information accuracy.

Most of transmit processing techniques rely on the fact that the transmitter knows

perfectly the channel [5, 6, 45–48]. However, the random time-varying wireless medium

makes it very difficult and often expensive to obtain perfect channel state information at

the transmitter (CSIT). In closed-loop methods, CSIT is degraded by the limited feedback

resources, associated feedback delays, and scheduling lags [49]. In open-loop methods,

antenna calibration errors and turn-around time lags limit CSIT accuracy [50]. Therefore,

the transmitter has often only partial channel information and schemes exploiting partial

CSIT are both important and necessary.

The first use of partial CSIT has been introduced in [51], where the limits on system

performance of a transmit array that uses partial side information to transmit to a single

user has been quantified. In [51], the feedback information consists of an N-bit description

of the channel parameters vector. The space of channel parameter vectors is quantized in 2N

regions and, for each region, the transmitter selects the transmission strategy that maximizes

the expected SNR. However, this work does not consider that the antennas might be too closely

spaced, making the channel parameters vector very correlated.

Some limited feedback multi-user MIMO (MU-MIMO) schemes let users quantize some

function of the channel matrix and send this information to the base station [7] [8]. The

problem is that, when the channel is quantized, the users’ signals can not be perfectly

orthogonalized due to inherent quantization errors. This leads to rate degradation as the

SNR increases. In order to avoid this problem, schemes are proposed that directly select a

quantized precoder from a codebook at the receiver and feedback the precoder index to the

transmitter [52,53]. However, it is too difficult to design the precoder codebook, which must

take into account the channel distribution and the precoder design.

Other approaches focused on the mean matrix of the channel [54], on the covariance matrix

of the channel as a form of feedback [55], or on both mean and covariance matrices [56].
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This information reveals much about the slow fading and the mean separability of the users.

In [54] optimum transmit strategies are proposed and the gains obtained are verified with the

use of two imperfect channel feedback schemes: mean feedback, in which the channel state

information resides in the mean of the channel distribution, with the channel covariance

modeled as an white random matrix; and covariance feedback, in which the channel state

information is assumed to be varying too rapidly to allow tracking its mean, so that the

mean is set to zero and the information is captured by a nonwhite covariance matrix. It is

interesting to comment that the considered system model in [54] was a single user one and

that the optimum transmission strategies presented were based on random coding arguments,

i.e., practical coding strategies for exploiting partial knowledge of the spatial channel were

not considered. In [55], the author considers the narrowband point-to-point communication

system employing multiple-element antenna arrays at both transmitter and receiver with

channel covariance feedback. Under covariance feedback, the receiver is assumed to have

perfect CSI while, at the transmitter, the channel matrix is modeled as consisting of zero-mean

circularly symmetric complex Gaussian (ZMCSCG) random variables with known covariances.

Most of the previous works have results for either mean information or the covariance

information available to the transmitter, but not both.

As previously mentioned, the time-variation of channel degrades the accuracy of the

channel information obtained at the transmitter. This occurs due to the delay involved in

the process of the channel estimation at the transmitter when using reciprocity or feedback.

The channel model proposed in [13] takes into account this channel time-variation. It relies

on the stochastic processes and estimation theories. Derived from a potentially outdated

channel measurement and from the channel statistics (mean and covariance), this proposed

CSIT model consists of a channel estimate and its error covariance, which act as the

effective channel mean and covariance, respectively. Both parameters depend on a temporal

correlation factor, indicating the CSIT quality. Depending on this quality, the model switches

smoothly from perfect to statistical channel information. This proposed CSIT model is

applicable to all Gaussian random channels, however it was only proposed for multiple-input

multiple-output (MIMO) single-user system. In this chapter, as one contribution of this

thesis, we propose a generalization of the work presented in [13] for a more general multicell

multiuser context, i.e., for the MU-MIMO coordinated multipoint (CoMP) channel model.

3.1 Proposed Statistical MU-MIMO CoMP Channel Model

Before we present our proposition, we discuss some concepts related to the temporal

variation of the channel that will be taken into account in the proposed channel model.

3.1.1 Channel Auto-covariance

The channel auto-covariance characterizes how rapidly the channel decorrelates in time.

Assuming stationarity, the auto-covariance between two channel samples Hk[m] and Hk[m+n]

depends on the time difference but not on the absolute time, and is given by:

Rk[n] = E

{
h̃k[m]h̃k[m+ n]H

}
, (3.1)

where h̃k = vec(H̃k) and H̃k[m] is the random part of the channel Hk[m] from all BSs to user k

represented by a joint ZMCSCG matrix and already defined in (2.11) on the page 9.

When n = 0, this auto-covariance coincides with the covariance of the channel from all

transmit antennas to user k, i.e., Rk[0] = E

{
h̃kh̃

H
k

}
, which is given in equation (2.12) on the

page 9; and when n becomes large it eventually decays to zero. For a MU-MIMO channel, the



3.1. Proposed Statistical MU-MIMO CoMP Channel Model 25

channel covariance Rk[0] of user k captures the spatial correlation among transmit antennas

and the receive antennas of user k, while the auto-covariance at a non-zero delay Rk[n]

captures both channel spatial and temporal correlations.

Based on the premise that the channel temporal statistics are the same for all antenna

pairs of a same user k, it may be assumed that the channel gains between all the NtNb

transmit antennas and Nr receive antennas of that user k have the same temporal correlation

function. Similar assumptions for MIMO temporal correlation have also been made in [57,58].

Then, it is possible to separate the temporal correlation from the spatial correlation and the

auto-covariance becomes their product as

Rk[n] = ρk[n]Rk[0] (3.2)

where ρk[∆n] is the channel temporal correlation and it is a function of the Doppler spread

fdk
of user k at time delay ∆n. In Jakes’ model, the channel temporal correlation is given

by [3,22]:

ρk[∆n] = J0 (2π∆nfdk
) , (3.3)

where J0 (.) is the zero-th order Bessel function of the first kind.

3.1.2 Channel Estimation at the Transmitter and Proposed Statistical CSIT

Firstly, consider that Ĥk[n] is the channel estimate of user k at time n and Ek[n] is the

estimation error matrix with correlation Rek[n]. The CSIT model can be considered as:

Hk[n] = Ĥk[n] +Ek[n], (3.4)

Rek[n] = E
{
ek[n]ek[n]

H
}

(3.5)

where ek[n] = vec (Ek[n]).

Moreover, we assume that the transmitter has an initial channel measurement at time

n = 0 equal to Hk[0] and relevant channel statistics (the channel mean Hk and the channel

covariance matrix Rk[0]) for each user k.

Considering that hk[0] = vec(Hk[0]) and hk[n] = vec(Hk[n]) are independent random

variables, then there is little that can be said about the value assumed by one random variable

(hk[n]) when the value assumed by the other (hk[0]) is known or measured [59]. However,

hk[0] and hk[n] are dependent channel vectors, since the channel is correlated in the time

domain. Thus, it is possible to say something about the value assumed by hk[n] when the

value assumed by hk[0] is known or measured.

Therefore, an estimate of the vector hk[n], say ĥk[n], can be described as a function of the

value assumed by other dependent vector, i.e., hk[0] [59]:

ĥk[n] = f (hk[0]) . (3.6)

The channel vector known at the transmitter hk[0] is considered valid in the estimation of

the channel vector at time n hk[n] during NS symbol times. Thus, in each NS symbol times,

the channel vector hk[0] need to be updated at the transmitter. This procedure decreases the

amount of feedback needed to estimated the channel vector at time n hk[n] compared to the

case when the transmitter has the perfect channel, i.e., when hk[n] is sent to transmitter in

each symbol time through the feedback channel.
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The challenge in such estimation procedure is to suitably choose the function f(·) to

yield an estimate ĥk[n] that satisfies a desired optimality criterion. For signal processing,

communications and control, one of the most important criteria is the least-mean-squares

[59]. With the mean-square-error criterion, it can be shown that the optimum estimate is the

conditional expectation of hk[n] given hk[0] represented by [59]:

ĥk[n] = E {hk[n]|hk[0]} . (3.7)

Calculating this expectation requires full knowledge of the joint probability density function

of {hk[n],hk[0]}, which is often hard to obtain. If, however, we deliberately restrict the

estimation function f(·) to be a linear function of the observations, then it turns out that

all we shall need is knowledge of the first- and second-order statistics given by E {hk[n]},
E {hk[0]}, E

{
hk[n]hk[n]

H
}
, E
{
hk[0]hk[0]

H
}
and E

{
hk[n]hk[0]

H
}
. This constraint is not so hard

since when {hk[n],hk[0]} are jointly Gaussian, an assumption that is often reasonable, the

unconstrained least-mean-squares estimation function is indeed linear [59].

Channel with Zero-Mean Assumption

Firstly, we will consider that the vectors hk[0] and hk[n] are NrNbNt × 1 complex random

variables with zero-mean. In a posterior analysis, we will take into account non-zero mean

vectors. Our objective is to estimate the value assumed by variable hk[n] given the value

assumed by random variable hk[0]. As already commented, we assume that hk[n] is estimated

by a linear combination of the form

ĥk[n] = Fhk[0], (3.8)

where F ∈ CNrNbNt×NrNbNt is a coefficient matrix we wish to determine so as to minimize the

resulting error covariance matrix Rek[n] for user k at time n,

FO = argmin
F

Rek[n] = argmin
F

E

{(
hk[n]− ĥk[n]

)(
hk[n]− ĥk[n]

)H}
. (3.9)

Thus, it is desired to find FO such that for every F ∈ CNrNbNt×NrNbNt we obtain

Rek[n] , E

{
(hk[n]− Fhk[0]) (hk[n]− Fhk[0])

H
}
� Re

O
k [n] (3.10)

where Re
O
k [n] is the minimum error covariance matrix and X � Y means that X−Y is positive

semi-definite.

This problem is equivalent to requiring that

aRek[n]a
H ≥ aRe

O
k [n]a

H (3.11)

for every F and for every non null row vector a [59].

In this problem, FO is a solution of the optimization problems (3.9) and (3.10) if, and only

if, for all vectors a, aFO is a minimum of aRek[n]a
H [59], where

aRek[n]a
H = aE

{
(hk[n]− Fhk[0]) (hk[n]− Fhk[0])

H
}
aH

= aE
{
hk[n]h

H
k [n]− hk[n]h

H
k [0]FH − Fhk[0]h

H
k [n] + Fhk[0]h

H
k [0]FH

}
aH (3.12)

From equations (2.12) and (3.1), we can rewrite (3.12) as:

aRek[n]a
H = a

(
Rk[0]−Rk[n]

HFH − FRk[n] + FRk[0]F
H
)
aH (3.13)
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where Rk[0] and Rk[n] are the channel covariance and the channel auto-covariance for user k,

respectively.

Note that aRek[n]a
H is a scalar function of a complex-valued (row) vector quantity aF. In

order to evaluate the differential of aRek[n]a
H with respect to aF and set the derivative equal

to zero at F = FO, we perform the gradient given by:

∇
(
aRek[n]a

H
)

∇aF

∣∣∣∣∣
F=FO

= 0

From [60], the gradient of a scalar function of a complex-valued vector is given by:

∇
(
aRek[n]a

H
)

∇aF
= 2.

∂
(
aRek[n]a

H
)

∂(aF)∗

∇
(
aRek[n]a

H
)

∇aF
= 2.

∂
(
a
(
Rk[0]−Rk[n]

HFH − FRk[n] + FRk[0]F
H
)
aH
)

∂(aF)∗

∇
(
aRek[n]a

H
)

∇aF
= 2.

(
∂(aRk[0]a

H)

∂(aF)∗
− ∂(aRk[n]

HFHaH)

∂(aF)∗
− ∂(aFRk[n]a

H)

∂(aF)∗
+

∂(aFRk[0]F
HaH)

∂(aF)∗

)

∇
(
aRek[n]a

H
)

∇aF
= 2.

(
0− 0−Rk[n]a

H +Rk[0]F
HaH

)

∇
(
aRek[n]a

H
)

∇aF
= −2Rk[n]a

H + 2Rk[0]F
HaH (3.14)

Setting the result of the derivative obtained in (3.14) equal to zero at F = FO we have:

− 2Rk[n]a
H + 2Rk[0]F

HaH

∣∣∣∣∣
F=FO

= 0

Rk[0]F
OHaH = Rk[n]a

H

Rk[0]F
OHaH = Rk[n]a

H

FOH = Rk[0]
−1Rk[n]

FO = Rk[n]
HRk[0]

−H

FO = Rk[n]
HRk[0]

−1 (3.15)

The corresponding minimum error covariance matrix Re
O
k [n] can be written as

Re
O
k [n] = E

{(
hk[n]− ĥk[n]

)(
hk[n]− ĥk[n]

)H}

= E

{(
hk[n]− FOhk[0]

) (
hk[n]− FOhk[0]

)H}

= E
{(

hk[n]− FOhk[0]
)
hk[n]

H −
(
hk[n]− FOhk[0]

)
hk[0]

HFOH
}

= E
{
hk[n]hk[n]

H − FOhk[0]hk[n]
H − hk[n]hk[0]

HFOH + FOhk[0]hk[0]
HFOH

}

= Rk[0]− FORk[n]−Rk[n]
HFOH + FORk[0]F

OH . (3.16)

Substituting the result obtained in (3.15) into (3.16), we obtain:

Re
O
k [n] = Rk[0]− FORk[n]−Rk[n]

HFOH +Rk[n]
HFOH

= Rk[0]− FORk[n], (3.17)
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and substituting (3.15) in (3.17) leads to

Re
O
k [n] = Rk[0]−Rk[n]

H(Rk[0])
−1Rk[n]. (3.18)

Now, we have found the linear function which minimizes the mean-square-error (FO) and

the minimum error covariance (Re
O
k [n]). Using the equation (3.15) in (3.8), we have that the

channel estimate ĥk[n] at time n for user k is given by:

ĥk[n] = Rk[n]
H(Rk[0])

−1hk[0]. (3.19)

Using the homogeneous channel temporal correlation assumption given in (3.2), the

channel estimate and its minimum error covariance become, respectively,

ĥk[n] = Rk[n]
H(Rk[0])

−1hk[0]

= (ρk[n]Rk[0])
H
(Rk[0])

−1hk[0]

= ρk[n]Rk[0]
H(Rk[0])

−1hk[0]

= ρk[n]hk[0]

Ĥk[n] = ρk[n]Hk[0]

(3.20)

and

Re
O
k [n] = Rk[0]−Rk[n]

H(Rk[0])
−1Rk[n]

= Rk[0]− (ρk[n]Rk[0])
H
(Rk[0])

−1 (ρk[n]Rk[0])

= Rk[0]− ρk[n]ρk[n]Rk[0]

=
(
1− ρ2k[n]

)
Rk[0]. (3.21)

where the channel estimate has been taken in a matricial form, without loss of generality.

Thus, the CSIT at time n for user k is given by the channel estimate Ĥk[n] (equation

(3.20)) and by its minimum error covariance Re
O
k [n] (equation (3.21)). They effectively work

as channel mean and channel covariance at a delay n for user k. Thus Ĥk[n] and Re
O
k [n]

are also referred to as the effective mean and effective covariance, respectively. Moreover, we

can notice from (3.20) and (3.21) that the CSIT for each user k is simply characterized as

a function of ρk[n], the initial channel measurement Hk[0] of that user k and the covariance

channel matrix Rk[0]. The channel estimate Ĥk[n] is a linear function of the initial channel

measurement and the error covariance Re
O
k [n] is a linear function of the channel covariance.

Substituting in (3.4) the result obtained for the channel estimate, i.e., the equation (3.20),

we have:

Hk[n] = ρk[n]Hk[0] +Ek[n]. (3.22)

From the covariance decomposition by Kronecker product (2.16), the error covariance

matrix given in (3.21) can similarly be decomposed in effective antenna correlation matrices

as

Re,t
O
k [n] =

√
1− ρ2k[n]Rtk, and

Re,r
O
k [n] =

√
1− ρ2k[n]Rrk, (3.23)
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which follow the Kronecker structure, where Rtk is the transmit covariance matrix and Rrk is

the receive covariance matrix of user k, given by equations (2.14) and (2.15).

Thus, we can rewrite the equation (3.22) as:

Hk[n] = ρk[n]Hk[0] +Re,r
O
k [n]

1/2Hwk[n]Re,t
O
k [n]

1/2, (3.24)

where Hwk[n] is an Nr × NbNt channel matrix whose entries are independent identically

distributed (i.i.d.) ZMCSCG with unit-variance.

Channel with Nonzero-Mean Assumption

So far in our channel estimate discussion, we have assumed that the channel vector hk[n]

is a zero-mean random one. However, in our channel model, there is a line-of-sight (LOS)

component which determines a non-zero channel mean (see equation (2.11)). In order to

consider the non-zero channel mean in the channel estimation, the simplest way is to proceed

by centering the random variables hk[0] and hk[n]. Let us define:

hcent
k [0] = hk[0]− hk and hcent

k [n] = hk[n]− hk (3.25)

where hk[0] and hk[n] are the non-zero mean random vectors and hk is the channel mean

vector for user k.

The transformation between {hk[0],hk[n]} and {hcent
k [0],hcent

k [n]} is reversible, so there is no

loss of information in making such a transformation. Evaluating the covariance matrix of the

hcent
k [0] and the auto-covariance matrix between the new matrices hcent

k [0] and hcent
k [n], we have:

E{hcent
k [0]hcentH

k [0]} = E{(hk[0]− hk)(hk[0]− hk)
H} = E{hk[0]h

H
k [0]} − hkh

H
k , (3.26)

and

E{hcent
k [0]hcentH

k [n]} = E{(hk[0]− hk)(hk[n]− hk)
H} = E{hk[0]h

H
k [n]} − hkh

H
k . (3.27)

From equations (3.26) and (3.27), we can define:

E{hcent
k [0]hcentH

k [0]} , Rk[0], covariance matrix of hk[0] (3.28)

E{hcent
k [0]hcentH

k [n]} , Rk[n], auto-covariance matrix between hk[0] and hk[n]. (3.29)

We can write the zero mean channel estimate ĥcent
k [n] from the equation obtained in (3.19)

as:

ĥcent
k [n] = (E{hcent

k [0]hcentH
k [n]})H(E{hcent

k [0]hcentH
k [n]})−1hcent

k [0]. (3.30)

From equations (3.28) and (3.29), we can rewrite the equation (3.30) as:

ĥcent
k [n] = Rk[n]

H(Rk[0])
−1hcent

k [0]. (3.31)

Substituting the equations that define the centered random variables hk[0] and hk[n] given
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by (3.25) into (3.31),

ĥk[n]− hk = Rk[n]
H(Rk[0])

−1(hk[0]− hk)

ĥk[n] = hk +Rk[n]
H(Rk[0])

−1(hk[0]− hk)

ĥk[n] = Rk[n]
H(Rk[0])

−1hk[0] + (1−Rk[n]
H(Rk[0])

−1)hk. (3.32)

We have already shown that, using the homogeneous channel temporal correlation

assumption, the term Rk[n]
H(Rk[0])

−1 is equal to the temporal correlation parameter for user

k at time n, represented by ρk[n]. Hence, the channel estimate given by equation (3.32) can be

rewritten as:

ĥk[n] = ρk[n]hk[0] + (1− ρk[n])hk

Ĥk[n] = ρk[n]Hk[0] + (1− ρk[n])Hk. (3.33)

Therefore, the channel model for the non-zero mean case can be written as:

Hk[n] = ρk[n]Hk[0] + (1− ρk[n])Hk +Re,r
O
k [n]

1/2Hwk[n]Re,t
O
k [n]

1/2. (3.34)

We can note that in this CSIT model, ρk[n] acts as a channel estimate quality measure that

dependents on the time delay n. When the delay is zero or a small value, the parameter ρk[n] is

close to 1 and the channel estimate is strongly determined by the initial channel measurement

Hk[0]. Moreover, the error covariance is small. As the delay increases, ρk[n] decreases to

0 reducing the impact of the initial channel measurement and the error covariance grows

towards the channel covariance Rk[0].

Since our channel model considers the Ricean factor κ (equation (2.42)), we need to insert

this factor appropriately into (3.34). Substituting the effective antenna correlation equations

(3.23) into (3.34) and making some mathematical manipulations, the channel model for a

non-zero mean case considering the Ricean factor κ can be rewritten as:

Hk[n] = ρk[n]Hk[0] + (1 − ρk[n])

√
κ

1 + κ
Hk +

√
1− ρ2k[n]

√
1

1 + κ
Rrk[n]

1/2Hwk[n]Rtk[n]
1/2. (3.35)

We can note that the channel model works as a predictor, in which the channel matrix is

evaluated from its initial matrix Hk[0], its mean matrixHk and the spatial covariance matrices.

3.2 Simulations with the Proposed Statistical MU-MIMO CoMP Channel

Model

In order to verify the performance of the proposed statistical MU-MIMO CoMP channel

model, we first need to present the transmist processing technique used, which is commonly

known as precoding. This technique exploits the channel state information at the transmitter

(CSIT) by operating on the signal before transmission in order to manage or eliminate the

interference. The transmitter in a system with precoding consists of an encoder and a

precoder, as depicted in figure 3.1. The encoder intakes data bits and performs coding for

error correction by adding redundancy, then maps the coded bits into vector symbols. The

precoder processes these symbols before transmission by the antennas. At the other end, the

receiver decodes the received signal corrupted by noise plus interference in order to recover

the data bits, treating the combination of the precoder and the channel as an effective channel.

In the literature, there are various precoding techniques that can be divided into linear and
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Figure 3.1: The transmitter in a system with precoder.

non-linear cases. The non-linear precoding techniques are based on the concept of coding

technique proposed by Costa, known as dirty-paper coding (DPC) [32]. These techniques

were developed having in mind interference cancellation and it was shown that the capacity

of a channel in the case the transmitter knows the interfering signal is the same as if no

interference is present. DPC techniques can achieve the maximum sum rate of the system

and provide the maximum diversity order [61]. However, these techniques require the use of

a complex sphere-decoder or an approximate closest-point solution, which makes them hard

to implement in practice [62]. Moreover, non-linear MU-MIMO precoding techniques require

the instantaneous knowledge of the channel matrix at the transmitter.

The linear precoding assumes that the transmitted signal is generated by a linear

combination of input data symbols. Some examples of these techniques are zero-forcing

(ZF) [3] and minimum mean-square error (MMSE) approach [63]. These linear techniques

are less computationally demanding than DPC ones, and they can use either instantaneous

channel knowledge or long-term statistics of the channel. Thus, they are more flexible and

more favorable for practical implementation than non-linear techniques. In this section, we

analyze the proposed statistical channel model using linear precoder techniques.

As already mentioned in Section 2.4, the MU-MIMO CoMP model has per-base power

constraints. We define the joint precoder matrix T as being the matrix composed by precoder

matrices of all K users:

T = [T1,T2, . . . ,TK ]NtNb×(
∑

k Lk), (3.36)

where Lk denotes the number of data streams intended for user k. A suboptimal way of

obtaining this joint precoding matrix T is to use the already known results for precoder

techniques without considering their scale factors (which is the classical approach for global

power constraints), and afterwards the per-base power constraints can be imposed by

applying a power loading matrix [44].

Thus, the matrix T can be seen as a product of two other matrices, given as:

T = ΘT̃, (3.37)

where T̃ is the joint precoder matrix without any power loading. In the same way as T, the

matrix T̃ is one collection of submatrices T̃k, grouped side-by-side,

T̃ = [T̃1, T̃2, . . . , T̃K ]NtNb×(
∑

k Lk), (3.38)

where T̃k represents the precoding matrix for the user k without any power loading. The

matrix Θ = µI is an (
∑

k Lk)× (
∑

k Lk) diagonal matrix with µ being the power allocated to the

original data stream [44].

Let PT = [P1, P2, · · · , PNb
]
T be the per-base power constraint vector, where Pb is the power
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constraint of BS b. Then the matrix Θ can be calculated as [44]:

Θ = µI, µ = min
b=1,2,··· ,NB

√√√√
(

Pb

‖T̃[b]‖2F

)
, (3.39)

where T̃[b] contains the rows of T̃ corresponding to the transmit antennas at BS b [44].

In this section, we consider the precoding matrix T̃ as being generated by the existent linear

precoding techniques known as zero-forcing (ZF) [3] and MMSE [63]. ZF precoding eliminates

all interference at the user terminal, but suffers from transmit signal attenuation. Therefore it

is a sub-optimal approach and might result in a significant performance degradation. MMSE

precoder makes a trade-off between interference cancellation and transmit power efficiency.

In the same way as the receive spatial MMSE filter, it approximates a matched filter at low

SNRs and is near optimal. At high SNRs, the MMSE precoder converges to a ZF precoder.

3.2.1 Cell Scenario, Channel Model and Simulation Steps

The simulator follows a Monte-Carlo simulation approach. It simulates the downlink of a

MU-MIMO CoMP system, where the base-station (BS)s can process data to be transmitted to

users in a joint way to precancel the effect of interference among cochannel users.

The cell scenario consists of 3 coordinated cells characterizing a CoMP structure as already

explained in chapter 2. The BSs are placed in the center of each cell and they can use more

than one antenna element simultaneously. Users are placed randomly at the beginning of the

simulation, where one user is located at each cell. It is considered that a scheduling algorithm

selected the best user to transmit before this simulation. This scheduling algorithm is not the

object of our interest. All users share the same radio resource and can be equipped with more

than one cross-polarized antenna element.

The considered channel model is frequency-flat and is divided into blocks, where in each

block the channel varies slowly following Jakes’ model for time correlation. Thus, in each

block, fast fading is present and is subject to the Doppler spread effect. The channel is

considered stationary during the simulation time, so the channel statistics remain valid

during the simulation.

Next, we enumerate the steps followed by the simulator:

i. At the beginning of the simulation, each user k sends to the BSs its channel mean

Hk,b. Moreover, the channel covariance for each user k, Rk[0], is evaluated at the central

processing unit, since we can consider that the channel covariance of the uplink is the

same as for the downlink [64]. As we consider a stationary channel, such matrices

remain valid during the whole simulation (see figure 3.2);

ii. At the beginning of each block, the users send the corresponding initial measurement

channel Hk[0] to the BSs.

iii. For each symbol time interval TS inside the block, the users send their corresponding

parameter ρk[n] to the BSs and their channels are estimated using equation (3.35) at the

central processing unit. We consider that the block has a length of NS symbols.

3.2.2 Simulation Parameters and Performance Metrics

In order to analyze the proposed channel model, we perform some simulations in which

the main simulation parameters are listed in Table 3.1.
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Figure 3.2: Modelling of the proposed channel model.

Table 3.1: Parameter of the Simulations.

Parameter Value

Number of cells Nb 3
Number of users per cell 1

Cell radius 1 km
Number of Tx antennas per BS Nt 2 or 4
Number of Rx antennas per MS Nr 2 or 4

Carrier Frequency 2 GHz
Users velocity 30 km/h

Doppler frequency fD 55.5 Hz
Coherence Time 1

2fD
= 9 ms

Noise power 30 dBm
Precoding techniques ZF and MMSE

The spatial antenna correlations are fixed for all BSs and users as [65]:

Rtk =





[
1 0.3

0.3 1

]
⊗ INb

if Nt = 2 and




1 0.4 0.3 0

0.4 1 0.4 0.3

0.3 0.4 1 0.4

0 0.3 0.4 1



⊗ INb

if Nt = 4 (3.40)

Rrk =





[
1 0.3

0.3 1

]
if Nr = 2 and




1 0.4 0.3 0

0.4 1 0.4 0.3

0.3 0.4 1 0.4

0 0.3 0.4 1



⊗ INb

if Nrt = 4 (3.41)

In order to analyze the results, the average spectral efficiency per user SEavg is adopted as

performance measure. Hence, we need to define the SINRi of the receive antenna i as:

SINRi =
‖(HT)i,i‖2F∑

j 6=i ‖(HT)i,j‖2F + ‖η‖2F
, (3.42)

where T is the joint precoding matrix given in (3.36) and H is the joint channel matrix given

by H =
[
HT

1 HT
2 . . . HT

K

]T
KNr×NtNb

. Moreover, Xi,j means the i, j-th element of matrix X.

The average spectral efficiency per user is given by:

SEavg =
1

K

NrK∑

i=1

log2 (1 + SINRi). (3.43)
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3.2.3 Simulation Results

Figures 3.3(a) and 3.3(b) compare the SEavg curves of linear precoding techniques using

both perfect and the proposed CSIT model with NS = 5 and considering that the Ricean factor

κ varies. The scenario has 2 receive and 2 transmit antennas. In figure 3.3(a) we have a Ricean

factor κ equal to 0 and we can observe that, at low SNRs, the performance obtained with the

proposed channel model is similar to the case considering perfect knowledge of the channel at

the transmitter. At high SNRs, the performance gap between the case considering perfect CSIT

and the proposed channel model increases. The MMSE precoding has better performance in

low signal-to-noise ratio (SNR)s than the ZF one, but at high SNRs the performance obtained

with the MMSE precoding converges to the performance obtained with the ZF one. This is

already expected from these precoding techniques [66]. From figure 3.3(b), we simulated the

same scenario with the Ricean factor κ equal to 10. In this figure, we can observe the same

behaviour than the top figure. When the SNR increases, the performance gap between the

proposed channel model and the model with perfect CSIT also increases. Comparing the

two figures 3.3(a) and 3.3(b) we can notice that, when the Ricean factor κ increases, the

performance gap between the perfect and the proposed model becomes smaller. This happens

because, when the Ricean factor κ is greater than 0, the channel has a LOS component which

makes the channel more stable relative to variations of the channel temporal correlation.

Moreover, we can note that the MMSE precoder technique is more robsut when using the

proposed channel model than the ZF technique. This can be seen since the performance

gap between the perfect channel and the proposed CSIT one obtained with MMSE precoder

technique is smaller compared to ZF precoder. Thus, we can conclude that the used precoding

technique influences the performance results of the proposed channel model.

In order to evaluate the performance results when the number of symbols per block NS

varies, we simulate the MMSE precoder in scenarios where both the number of transmit

and receive antennas are 2 and 4 and the parameter NS varies. Figures 3.4(a) and 3.4(b)

show the SE comparison when the number of transmit and receive antennas are both equal

to 2. In figure 3.4(a) the Ricean factor κ is equal to 0 and we can note that when the

number of symbols NS increases, the performance obtained with the proposed channel model

degrades. This is already expected since when the length of the block increases, the temporal

channel correlation decreases and the channel estimation error in the proposed channel

model becomes larger. From figure 3.4(a) we can also notice that the results obtained with

all NS values are similar in the SNR range [−5, 10] dB. Only from the SNR value of 10 dB the

results are degraded, mainly for NS = 10. In figure 3.4(b) we have the same simulation but

with the Ricean factor is equal to 10. We can note from this figure that the results obtained

with all NS values become similar until the SNR value is equal to 20 dB. And, only for a

number of symbols NS = 10, the performance degrades from the SNR value of 20dB. Hence,

the loss of performance of the proposed channel model when the number of symbols in each

block NS increases is less significant for high Ricean factor values, except when NS = 10.

Figures 3.5(a) and 3.5(b) show the SE comparison obtained with the MMSE precoder when

the number of transmit and receive antennas are both equal to 4 and the number of symbols

NS varies. From these figures we can also notice that when the Ricean factor κ increases, the

performance variation of the proposed channel model becomes smaller.
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3.3 Summary

In this chapter we proposed a statistical channel model for the MU-MIMO CoMP scenario

which takes into account the channel temporal correlation. This proposed CSIT model was

obtained from error estimation theory and compared to the case with perfect CSIT using the

ZF and MMSE precoding. The results showed that the performance gap between the proposed

CSIT model and the cases with perfect CSIT is negligible for low SNR values and moderate for

medium to high SNR values.

We evaluated also the influence of the update frequency of the joint initial channel matrix

H[0], which is inversely proportional to the number of symbols NS, on the performance results

and showed that, when the update frequency increases (NS decreases), the results become

better. But, since the increase of the update frequency causes more feedback information,

it is necessary to determine a suitable trade-off value between performance and amount of

feedback.

Another important conclusion about the proposed CSIT model is that their performance

results are better or worse depending of the chosen precoder technique. Moreover, the

precoding techniques used in the simulation were designed for the perfect CSIT case. Hence,

designing a precoder that exploits the advantages of the proposed channel model is the next

step of our work, and it will be discussed in the next chapter.
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Figure 3.3: SE curves of linear precoding techniques using perfect and the proposed channel model
with NS = 5 and Nt = Nr = 2.
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Figure 3.4: SE curves of MMSE precoding technique using the proposed channel model and varying the
number of symbols in each block NS for Nt = Nr = 2.
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Figure 3.5: SE curves of MMSE precoding technique using the proposed channel model and varying the
number of symbols in each block NS for Nt = Nr = 4.
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Chapter 4
Statistical Transmit Scheme for

MU-MIMO CoMP Systems

In this chapter, we propose two transmit schemes that aim at maximizing the first and

second-order approximations of the ergodic sum rate in the downlink of a multi-user MIMO

(MU-MIMO) coordinated multipoint (CoMP) system. This considered system model has the

mean and the covariance matrices of the channel as partial channel state information at the

transmitter (CSIT). Firstly, we use the duality theory [14,15] to compute the sum rate of the

downlink MU-MIMO CoMP system and next find a first and second-order approximation of the

ergodic sum rate of the considered system. In sequel, we derive input covariance matrices that

maximize the found approximations and, using simulations, we present results showing that

our proposed schemes are near-optimal and provide good results compared to the optimal

iterative water-filling algorithm proposed by Jindal et al in [14].

4.1 Duality and Multiuser MIMO Downlink CoMP Capacity

In this section, we describe the problem of maximizing the downlink sum rate of the

MU-MIMO CoMP system subject to a per-base power constraint. From equations (2.26) and

(2.28), and modifying the power constraint for the power restriction of our considered model

(detailed in Section 2.4, equation (2.44)), we have that the sum rate of the system considered

in this work can be rewritten as

CDL(H1, . . . ,HK , P1, . . . , PNb
) = max

{Ωk}K
k=1

;Ωk�0,
K
∑

k=1

Tr(Ωk,b)≤Pb

∑

k

log

∣∣∣∣∣I+Hk

(
∑
j≥k

Ωj

)
HH

k

∣∣∣∣∣
∣∣∣∣∣I+Hk

(
∑
j>k

Ωj

)
HH

k

∣∣∣∣∣

, (4.1)

where Pb is the power constraint of base-station (BS) b, Ωk,b = Tk,bT
H
k,b is the input covariance

matrix of user k and BS b and Hk =
[
Hk,1 Hk,2 . . . Hk,Nb

]
Nr×NbNt

is the joint channel

matrix from all BSs to user k with Hk,b being the channel matrix from BS b to user k.

Since the optimization in (4.1) must be performed over all Ωk for k = 1, . . . ,K and the power

constraint is applied only in a matrix that is a part of Ωk, this optimization problem becomes

hard to solve. An alternative solution for this impairment is, firstly, to compute the sum rate

considering a global power restriction, given by the sum of the power restriction of each base,

and later, to apply a power normalization matrix that satisfies the per-base power restrictions.

Accordingly, in this section we will relax the per-base power constraints and consider a sum
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power constraint. In a posterior section, the considered power normalization will be explained

and, in spite of being only near-optimal, it will be shown to provide good results.

Now, considering a sum-power constraint and assuming perfect synchronization of the

different delays from different BSs to each user, we can model the multiple BSs of our CoMP

system as a single large BS. Then, our model can be viewed as the downlink of a large

MU-MIMO system and the maximization of the sum rate in the downlink of a MU-MIMO

system can be written as (equations (2.26) and (2.28)):

CDL(H1, . . . ,HK , P ) = max

{Ωk}K
k=1

;Ωk�0,
K
∑

k=1

Tr(Ωk)≤P

∑

k

log

∣∣∣∣∣I+Hk

(
∑
j≥k

Ωj

)
HH

k

∣∣∣∣∣
∣∣∣∣∣I+Hk

(
∑
j>k

Ωj

)
HH

k

∣∣∣∣∣

, (4.2)

where P =
Nb∑
b=1

Pb is the sum power constraint.

The maximization in (4.2) is performed over the downlink input covariance matrices

Ω1, . . . ,ΩK , each of which is an NbNt × NbNt positive semidefinite matrix given by

Ωk = E{xkx
H
k }, where xk =

[
xk,1 xk,2 . . . xk,Nb

]T
and xk,b is the signal transmitted from BS

b to user k. The main interest is to find the covariance matrices that achieve the maximum in

(4.2). However, this is a nontrivial problem since the objective function in (4.2) is not a concave

function of Ω1, . . . ,ΩK [37]. One possible solution is to exploit the existing duality between the

uplink and downlink channels of a MU-MIMO system [15], which has been already detailed

for the MU-MIMO system case in Section 2.3. Figure 4.1 shows the downlink channel of the

CoMP MU-MIMO system with K users along with the dual uplink channel. The dual uplink

channel is a K-user MU-MIMO uplink channel where each of the dual uplink channels is the

conjugate transpose of the corresponding downlink channel.

+
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... ...
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Figure 4.1: System model of the downlink MU-MIMO CoMP (left) and uplink MU-MIMO CoMP (right)
channels.

Considering the duality theorem stated in [15], which affirms that the sum rate of the

downlink MU-MIMO is equal to the sum rate of the dual uplink MU-MIMO, i.e.:

CDL(H1, . . . ,HK , P ) = CUL(H
H
1 , . . . ,HH

K , P ), (4.3)
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we can now rewrite our optimization problem as the maximization of the sum rate of the

uplink MU-MIMO, which is given by the following expression ( from (2.41)) [14]:

CDL(H
H
1 , . . . ,HH

K , P ) = CUL(H
H
1 , . . . ,HH

K , P ) = max

{Qk}K
k=1

;Qk�0,
K
∑

k=1

Tr(Qk)≤P

log

∣∣∣∣∣I+
K∑

k=1

HH
k QkHk

∣∣∣∣∣ ,

(4.4)

whereQk is a Nr×Nr matrix given by Qk = E{xkx
H
k } with xk being the signal vector transmitted

from user k to all BSs. The maximization is performed over the uplink input covariance

matrices Q1, . . . ,QK subject to sum power constraint P . This objective function is a concave

function of the covariance matrices [15]. Since a transformation that maps uplink input

covariance matrices to downlink input covariance matrices achieving the same rates and

using the same sum power has already been presented in Section 2.3 and it is also provided

in [15], we can find first the uplink input covariance matrices and, after that, obtain the

corresponding downlink input covariance matrices using this mapping.

In order to solve (4.4) we perform a block-coordinated ascent algorithm, which consists of

optimizing Qk while holding constant all other variables Qj for j 6= k [38]. Accordingly, when

optimizing Q1, the matrices Q2, . . . ,QK are assumed to remain constant, when optimizing

Q2, the matrices Q1,Q3, . . . ,QK are assumed to remain constant, and so on. This iterative

optimization is performed until the convergence of the sum rate is achieved. Moreover,

since we have a global sum power constraint in our optimization problem in (4.4), the input

covariance matrices of all K users must be updated in each iteration of the algorithm to

maintain a constant sum power. In order to perform this, we consider in our algorithm

that all K input covariance matrices are updated in each iteration based on the covariance

matrices from the previous iteration. Thus we have:

Q
(i+1)
k =





argmax

Qk;Qk�0,
K
∑

k=1

Tr(Qk)≤P

log

∣∣∣∣∣∣
I+

∑

j 6=k

HH
j Q

(i)
j Hj +HH

k QkHk

∣∣∣∣∣∣
, if k = [(i− 1) mod K] + 1

Q
(i)
k , if k 6= [(i− 1) mod K] + 1

(4.5)

where Q
(i)
k is the uplink input covariance matrix of user k evaluated in the i-th iteration of the

algorithm and [x mod y] is the remainder of the integer division of x by y.

Let us denote the objective function of (4.5) by f(·), i.e.,

f(Q1, . . . ,QK) , log

∣∣∣∣∣∣
I+

∑

j 6=k

HH
j Q

(i)
j Hj +HH

k QkHk

∣∣∣∣∣∣
. (4.6)

Note that the function f(·) in (4.6) can be rewritten after some mathematical manipulations

as

f(Q1, . . . ,QK) = log

∣∣∣∣∣∣
I+

∑

j 6=k

HH
j Q

(i)
j Hj

∣∣∣∣∣∣
+

+ log

∣∣∣∣∣∣∣
I+


I+

∑

j 6=k

HH
j Q

(i)
j Hj




−1/2

HH
k QkHk


I+

∑

j 6=k

HH
j Q

(i)
j Hj




−1/2
∣∣∣∣∣∣∣
,(4.7)

for any k, where the derivation is shown in appendix A.1.

When optimizing f(·) for user k, we notice that the first term in (4.7) is constant. Hence,
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maximizing (4.7) is equivalent to maximizing only its second term. Defining an auxiliary

matrix Ck as

Ck = I+
∑

j 6=k

HH
j Q

(i)
j Hj (4.8)

and using this fact, we can rewrite (4.5) as

Q
(i+1)
k =





argmax

Qk;Qk≥0,
K
∑

k=1

Tr(Qk)≤P

log
∣∣∣I+ (HkC

−1/2
k )HQkHkC

−1/2
k

∣∣∣, if k = [(i− 1) mod K] + 1

Q
(i)
k , if k 6= [(i− 1) mod K] + 1

(4.9)

Therefore, we can define that the sum rate of the uplink MU-MIMO CoMP channel given

by (4.4) is numerically equivalent to the value CG which is given by [14]:

CG = max

Qk�0,
K
∑

k=1

Tr(Qk)≤P

log
∣∣∣I+ (HkC

−1/2
k )HQk(HkC

−1/2
k )

∣∣∣ , (4.10)

i.e., maximizing (4.4) is equivalent to maximizing the rate of the point-to-point MIMO channel

Gk described by

Gk = HkC
−1/2
k . (4.11)

In the next section, we will obtain an approximation of the ergodic sum-rate of the uplink

MU-MIMO CoMP channel. For this, we will use the fact previously shown that the sum rate

of uplink MU-MIMO CoMP is numerically equal to the rate CG of the point-to-point MIMO

channel Gk [14]. Moreover, we will consider that the transmitter has partial knowledge about

the channel.

4.2 Approximations of the MU-MIMO CoMP Ergodic Sum-Rate

In some recent works, the authors assume that the channel is perfectly known at the

transmitter [14–16]. This assumption can have a significant impact on the maximum ergodic

sum rate that can be reliably communicated over the channel, but may not be realistic in

many practical scenarios. In this thesis, we assume that the transmitter has access to

statistical channel state information (CSI), while the receiver has access to instantaneous

CSI. In this section, we derive a first- and second-order approximation of the ergodic sum rate

for a MU-MIMO CoMP system.

Considering the sum rate of the MU-MIMO CoMP system with perfect CSI at the transmitter

and its numerical equivalence with the sum rate of the point-to-point MIMO channel CG, we

have from (4.10) and (4.11) that the ergodic sum rate of the MU-MIMO CoMP channel is given

by:

CCoMP(H
H
1 , . . . ,HH

K , P ) = max

Qk�0,
K
∑

k=1

Tr(Qk)≤P

E
{
log
∣∣I+GH

k QkGk

∣∣} , (4.12)

where P =
Nb∑
b=1

Pb and the expectation is taken over the channel matrices Hk, which are part of

Gk as defined in (4.11). Since we have considered in the optimization that the input covariance

matrices of the other users j 6= k are constant in the evaluation of the input covariance matrix

for user k, the matrix Ck of (4.8) can also be considered constant.

In [67] we observe that the equality log |X| = tr (log(X)) is considered true for positive

definite matrices. Using this result for the matrix I+GH
k QkGk in (4.12) and considering that

the transmit power P is sufficiently small so that the maximum eigenvalue of I + GH
k QkGk
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is less than 1 with high probability, we can use the Taylor expansion log(I +A) = A − 1
2A

2 +
1
3A

3 − . . . on the objective function of (4.12).

After these considerations and considering only the two first terms on the Taylor expansion

(second-order approximation), we rewrite (4.12) as

CCoMP = max

Qk�0,
K
∑

k=1

tr(Qk)≤P

E

{
log
∣∣∣I+C

−1/2
k HH

k QkHkC
−1/2
k

∣∣∣
}

= max

Qk�0,
K
∑

k=1

tr(Qk)≤P

E

{
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)
− 1

2
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)2}

= max

Qk�0,
K
∑

k=1

tr(Qk)≤P

E

{
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)}
− 1

2
E

{
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)2}
.

(4.13)

Following, we will evaluate the first- and second-order approximation of the MU-MIMO

CoMP sum-rate.

4.2.1 Proposed Input Covariance Matrices using the First-Order Approximation of the

Sum Rate - FOIC Approach

Considering only the first term of the Taylor expansion in equation (4.13), we obtain the

first-order approximation of the ergodic sum-rate:

CCoMP_FO = max
Qk�0,

∑

K
k=1

Tr(Qk)≤P
E
{
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)}
. (4.14)

If we assume that the transmitter has access to statistical channel state information

(CSI), we can substitute the Kronecker channel model equation given by (2.42) in (4.14). For

simplicity of notation, we will omit the factors
√

κ
1+κ and

√
1

1+κ of (2.42), which will be suitably

reintroduced later. After some mathematical manipulations [68], we have:

CCoMP_FO = max
Qk�0,

∑

K
k=1

Tr(Qk)≤P
tr
(
HH

k QkHkC
−1
k

)
+ tr (RrkQk) tr

(
RtkC

−1
k

)
(4.15)

In order to simplify notation, we introduce an additional auxiliary matrix Xk defined as

Xk =
(
HkC

−1
k HH

k + tr
(
RtkC

−1
k

)
Rrk

)
, (4.16)

which will be used in the sequel.

Therefore, the first-order approximation of the sum rate can be rewritten as:

CCoMP_FO = max
Qk�0,

∑K
k=1

tr(Qk)≤P
tr (XkQk) . (4.17)

In order to use an already known solution, we have to perform a modification in the power

constraint of the optimization problem in (4.17). We divide equally the sum power constraint

P for all K users, thus we have that our optimization problem can be rewritten as:

CCoMP_FO = max
Qk�0,tr(Qk)≤

P
K

tr (XkQk) . (4.18)

This modification in the power constraint will not affect the solution of the original

optimization problem since this sum power constraint is a relaxed one as we have already
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explained in Section 4.1. Moreover, after the optimization, a power normalization matrix

will be applied in order satisfy the per-base power restrictions which is the intrinsic power

constraint of the CoMP system.

The sub-optimal input covariance matrix for each user can be found optimizing this

first-order approximation of the sum rate. In order to find the solution, we use the result

in [69, Example 7.4.13] to consider as solution the matrix Qk with the same eigenbasis as

Xk. That is, if Xk = UXΛXUH
X denotes the ordered eigendecomposition of Xk, it is sufficient

to consider matrices Qk of the form UXΛQU
H
X , where ΛQ denotes the diagonal matrix of

(nonnegative) eigenvalues of Qk. If the maximum eigenvalue of Xk is distinct, the optimal

eigenvalues of Qk are λQ1
= P

K and λQ2
= . . . = λQNr

= 0. That is, beamforming along the

principal eigenvector of Xk is sufficient for rate-optimal communication. For the case in

which the largest eigenvalue of Xk has multiplicity greater than 1, any partitioning of power

in the direction of the eigenvectors corresponding to these eigenvalues is optimal up to the

first-order approximation [56].

4.2.2 Proposed Input Covariance Matrices using the Second-Order Approximation of the

Sum Rate - SOIC Approach

As we assume that the transmitter has access to statistical channel state information,

we can introduce our channel model (2.42) into the second-order approximation shown in

equation (4.13) and proceed with the derivations term-by-term. For simplicity of notation, we

will again omit the factors
√

κ
1+κ and

√
1

1+κ of (2.42), which will be suitably reintroduced later.

Let us consider initially the first term of (4.13), which we will denote by

Π = E

{
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)}
. (4.19)

Substituting the channel model given by (2.42) into (4.19), we have

Π =E

{
tr

(
C

−1/2
k

(
Hk +Rr

1/2
k HwkRt

1/2
k

)H
Qk

(
Hk +Rr

1/2
k HwkRt

1/2
k

)
C

−1/2
k

)}

=tr
(
C

−1/2
k E

{
HH

k QkHk +HH
k QkRr

1/2
k HwkRt

1/2
k +Rt

1/2
k Hw

H
k Rr

1/2
k QkHk+

+ Rt
1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k

}
C

−1/2
k

)

=tr
(
C

−1/2
k

(
HH

k QkHk + E

{
Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k

})
C

−1/2
k

)
. (4.20)

We show in Appendix A.2 that the term E

{
Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k

}
reduces to

tr
(
Rr

1/2
k QkRr

1/2
k

)
Rtk after some mathematical manipulations. Hence, (4.20) can be written

as

Π = tr
(
HH

k QkHkC
−1
k

)
+ tr (RrkQk) tr

(
RtkC

−1
k

)
. (4.21)

Let us now study the second term of the Taylor expansion contained in (4.13), which we

will denote by

Ξ = E

{
tr
(
C

−1/2
k HH

k QkHkC
−1/2
k

)2}
. (4.22)
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Substituting the channel model given by (2.42) into (4.22), we have

Ξ =E

{
tr

(
C

−1/2
k

(
Hk +Rr

1/2
k HwkRt

1/2
k

)H
Qk

(
Hk +Rr

1/2
k HwkRt

1/2
k

)
C

−1/2
k

)2
}

=E

{
Tr
(
C

−1/2
k HH

k QkHkC
−1/2
k +C

−1/2
k HH

k QkRr
1/2
k HwkRt

1/2
k C

−1/2
k +

+ C
−1/2
k Rt

1/2
k Hw

H
k Rr

1/2
k QkHkC

−1/2
k +C

−1/2
k Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k C

−1/2
k

)2}
.

(4.23)

Then, we rewrite (4.23) as

Ξ =E

{
tr
(
A+ (B+BH) +C

)2}

=E
{
tr
(
A2 + (B+BH)2 +C2 + 2A(B+BH) + 2AC+ 2(B+BH)C

)}

=E
{
tr
(
A2
)}

+ E
{
tr
(
(B+BH)2

)}
+ E

{
tr
(
C2
)}

+ E
{
tr
(
2A(B+BH)

)}
+

+ E {tr (2AC)}+ E
{
tr
(
2(B+BH)C

)}
, (4.24a)

where

A = C
−1/2
k HH

k QkHkC
−1/2
k , (4.24b)

B = C
−1/2
k HH

k QkRr
1/2
k HwkRt

1/2
k C

−1/2
k , (4.24c)

C = C
−1/2
k Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k C

−1/2
k . (4.24d)

We can notice that E {tr (AB)} = 0 and E
{
tr
(
ABH

)}
= 0 since A is a deterministic matrix

and E {Hwk} = 0. In Appendix A.3 we show that E {tr (BB)} = 0 and E
{
tr
(
BHBH

)}
= 0; and

in Appendix A.4 we show that E {tr (BC)} = 0 and E
{
tr
(
BHC

)}
= 0. This reduces (4.24a) to

Ξ = E
{
tr
(
A2
)}

+ 2E
{
tr
(
BBH

)}
+ E

{
tr
(
C2
)}

+ 2E {tr (AC)} . (4.25)

In Appendix A.5, we show the evaluation of E {tr (AC)} and of E
{
tr
(
BBH

)}
and in Appendix

A.6 we evaluated the term E
{
tr
(
C2
)}

. Using the results provided in the referred appendices,

we rewrite (4.25) as

Ξ =tr
(
HH

k QkHkC
−1
k

)2
+ 2 tr

(
Rt

1/2
k C−1

k Rt
1/2
k

)
tr
(
C

−1/2
k HH

k QkRrkQkHkC
−1/2
k

)
+

+ tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)2 (
tr
(
Rr

1/2
k QkRr

1/2
k

))2
+ tr

(
Rr

1/2
k QkRr

1/2
k

)2 (
tr
(
Rt

1/2
k C−1

k Rt
1/2
k

))2
+

+ 2 tr
(
Rr

1/2
k QkRr

1/2
k

)
tr
(
HH

k QkHkC
−1
k RtkC

−1
k

)
. (4.26)

After some mathematical manipulation, we have that (4.26) is

Ξ = tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)2 (
tr
(
Rr

1/2
k QkRr

1/2
k

))2
+ 2 tr

(
Rr

1/2
k QkRr

1/2
k

)
tr
(
HH

k QkHkC
−1
k RtkC

−1
k

)
+

+ tr
((

tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)
Rrk +HkC

−1
k HH

k

)
Qk

)2
. (4.27)

Using (4.21) and (4.27) in (4.13), the second-order approximation of the ergodic sum rate
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of the MU-MIMO CoMP system can be written as

CCoMP_SO = max

Qk�0,
K
∑

k=1

Tr(Qk)≤P

tr
(
HH

k QkHkC
−1
k

)
+ tr (RrkQk) tr

(
RtkC

−1
k

)
−

− 1

2

(
tr
(
RtkC

−1
k

)2
(tr (RrkQk))

2
+ 2 tr (RrkQk) tr

(
HH

k QkHkC
−1
k RtkC

−1
k

)
+

+ tr
((
tr
(
RtkC

−1
k

)
Rrk +HkC

−1
k HH

k

)
Qk

)2)
,

CCoMP_SO = max

Qk�0,
K
∑

k=1

Tr(Qk)≤P

tr
((
HkC

−1
k HH

k + tr
(
RtkC

−1
k

)
Rrk

)
Qk

)
−

− 1

2

(
tr
(
RtkC

−1
k

)2
(tr (RrkQk))

2
+ 2 tr (RrkQk) tr

(
HH

k QkHkC
−1
k RtkC

−1
k

)
+

+ tr
((
tr
(
RtkC

−1
k

)
Rrk +HkC

−1
k HH

k

)
Qk

)2)
. (4.28)

Using (4.16) in (4.28), we have that the second order approximation of the ergodic sum rate

of the MU-MIMO CoMP system is given by

CCoMP_SO = max

Qk�0,
K
∑

k=1

Tr(Qk)≤P

tr (XkQk)−
1

2

(
tr
(
RtkC

−1
k

)2
(tr (RrkQk))

2
+

+ 2 tr (RrkQk)Tr
(
HH

k QkHkC
−1
k RtkC

−1
k

)
+ tr (XkQk)

2
)
. (4.29)

Since Ck is considered a constant matrix in the optimization for user k, we can observe

from (4.29) that the required channel information for user k in order to optimize Qk are only

the channel mean matrix Hk and the channel covariance matrix, which are represented by

Rtk and Rrk. In the next section, we will use optimization tools to obtain the input covariance

matrices from the optimization problem given in (4.29).

4.3 Input Covariance Matrix Maximizing the Second-Order

Approximation of the Ergodic Sum Rate

In this section, we maximize the second-order approximation of the ergodic sum rate and

find a near-optimal input covariance matrix for each user. Firstly, we analyze the convergence

of the ergodic sum rate and then we derive an efficient algorithm for obtaining the input

covariance matrices that maximize the second-order approximation of the ergodic sum rate.

4.3.1 Convergence Analysis

In order to analyze the convergence of the ergodic sum rate, we take the ergodic sum rate

given by (4.12) assuming that an optimal input covariance matrix QO
k is obtained. Moreover,

denoting the eigen decomposition of GH
k QO

k Gk as ΛkΦkΛ
H
k , where Λk is an NbNt×NbNt unitary

matrix and Φk is an NbNt ×NbNt ordered diagonal one, we can write the optimal ergodic sum

rate of the MU-MIMO CoMP channel as

CCoMP_Opt = E
{
log
∣∣I+GH

k QO
k Gk

∣∣}

= E {tr (log(I+Φk))} (4.30)

where the expectation is taken over the diagonal elements of Φk {θi}NbNt

i=1 .

We explore now the optimal ergodic sum rate aiming to guarantee its convergence. One
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can write (4.30) as

CCoMP_Opt =

∫ ∞

0

. . .

∫ ∞

0

tr (log(I+Φk)) pΦk
(θ1, . . . , θNbNt)dθ1 . . . dθNbNt (4.31)

where pΦk
(Φ) is the joint probability density function of the diagonal elements of Φk.

Partitioning the integral in (4.31), we have

CCoMP_Opt =

∫ δ

0

. . .

∫ δ

0

tr (log(I+Φk)) pΦk
(θ1, . . . , θNbNt)dθ1 . . . dθNbNt

+

∫ ∞

δ

. . .

∫ ∞

δ

tr (log(I+Φk)) pΦk
(θ1, . . . , θNbNt)dθ1 . . . dθNbNt (4.32)

We observe from (4.32) that the convergence of the optimal ergodic sum rate will be guaranteed

only if we choose a scalar δ sufficiently large so as to ensure that

∫ ∞

δ

. . .

∫ ∞

δ

tr (log(I+Φk)) pΦk
(θ1, . . . , θNbNt)dθ1 . . . dθNbNt ≤ ǫ, (4.33)

for some arbitrary small ǫ > 0. Hence, if we show that (4.33) is true, we guarantee that the

integral in (4.31) converges. Thus, we can also guarantee that our algorithm will converge.

Assuming ǫ to be sufficiently small and choosing δ to satisfy (4.33), we can write:

CCoMP_Opt ≈ E {tr (log(Φk − δINbNt + (δ + 1)INbNt))} ,

= NtNb log(δ + 1) + E

{
tr

(
log

(
1

δ + 1
(Φk − δINbNt) + INbNt

))}
. (4.34)

Using the Taylor expansion log(I +A) = A − 1
2A

2 + 1
3A

3 − . . . with A = 1
δ+1 (Φk − δINbNt) in

(4.34), we have

CCoMP_Opt = NtNb log(δ + 1) + E

{
tr

(
log

(
1

δ + 1
(Φk − δINbNt)−

1

2(δ + 1)2
(Φk − δINbNt)

2 − . . .

))}
.

(4.35)

We can observe from (4.35) that the first and second terms of the expansion of the optimal

ergodic sum rate have the factors 1
δ+1 and 1

2(δ+1)2 , respectively. These factors play a key role

in determining the dominance of each term (first and second) of the expansion in the optimal

input covariance solution. If δ is not sufficiently large, the Taylor expansion (4.35) may not

converge, on the other hand, if δ is set too large, the expansion will converge too fast for the

first term to capture the dominant components of the expansion. Accordingly, we need to

consider the factors 1
δ+1 and 1

2(δ+1)2 in the second-order approximation of the ergodic sum

rate given by equation (4.29).

Now, we have that our optimization problem is

max

{Qk}K
k=1

;Qk≥0,
K
∑

k=1

Tr(Qk)≤P

F (Qk), (4.36)

with

F (Qk) =
1

δ + 1
tr (XkQk)−

1

2(δ + 1)2

(
tr
(
RtkC

−1
k

)2 · (tr (RrkQk))
2
+

+ 2 tr (RrkQk) · tr
(
HH

k QkHkC
−1
k RtkC

−1
k

)
+ tr (XkQk)

2
)

(4.37)
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where Xk comes from (4.16) and δ is appropriately chosen so as to ensure that (4.33) is

satisfied for the sum power of interest.

4.3.2 Convex Optimization of the Second-Order Approximation of the Ergodic Capacity

It is possible to show that the objective function in (4.36) is convex and strictly feasible for

any P > 0 [37]. Accordingly, we can use the Karush-Kuhn-Tucker (KKT) conditions to attain

both the primal and dual solutions of the optimization problem [37]. The Lagrangian of (4.37)

can be written as

L(Qk,Zk, ν) =− F (Qk)− tr (ZkQk) + ν

(
K∑

k=1

tr (Qk)− P

)

=
1

2(δ + 1)2

(
tr
(
RtkC

−1
k

)2
(tr (RrkQk))

2
+ 2 tr (RrkQk) tr

(
HH

k QkHkC
−1
k RtkC

−1
k

)
+

+ tr (XkQk)
2
)
− 1

δ + 1
tr (XkQk)− tr (ZkQk) + ν

(
K∑

k=1

tr (Qk)− P

)
(4.38)

where Zk and ν are dual variables.

The KKT conditions for the optimization problem are

∇Qk
L = 0 ⇒ 1

2(δ + 1)2

(
2 tr

(
RtkC

−1
k

)2
tr (RrkQk)Rrk + 2 tr

(
HkC

−1
k RtkC

−1
k HH

k Qk

)
Rrk+

+2 tr (RrkQk)HkC
−1
k RtkC

−1
k HH

k + 2XkQkXk

)
− 1

δ + 1
Xk − Zk + νI = 0, (4.39a)

Qk � 0, (4.39b)

∇Zk
L = 0 ⇒ tr (ZkQk) = 0, (4.39c)

Zk � 0, (4.39d)

∇νL = 0 ⇒
K∑

k=1

tr (Qk)− P = 0 ⇒
K∑

k=1

tr (Qk) = P (4.39e)

Assuming that Xk is invertible, we obtain the following input covariance matrix Qk that

maximizes the function F (Qk):

Qk =X
−1

k

(

(δ + 1)2
(

Zk +
1

δ + 1
Xk − νI

)

−

(

tr
(

RtkC
−1

k

)2

tr (RrkQk) + tr
(

HkC
−1

k RtkC
−1

k H
H

k

))

Rrk−

− tr (RrkQk)HkC
−1

k RtkC
−1

k H
H

k

)

X
−1

k . (4.40)

Making some mathematical manipulations in (4.40), we have that the input covariance

that maximizes F (Qk) can be simplified as

Qk = (δ + 1)2X
−1/2
k

(
Z̃k +

1

δ + 1
I− νX−1

k −Θ1R̃rk −Θ2S̃k

)
X

−1/2
k , (4.41a)

where

Z̃k = X
1/2
k ZkX

1/2
k , (4.41b)

R̃rk = X
1/2
k RrkX

1/2
k , (4.41c)

S̃k = X
1/2
k HkC

−1
k RtkC

−1
k HH

k X
1/2
k , (4.41d)

Θ1 = (δ + 1)2
(
tr
(
RtkC

−1
k

)2
tr (RrkQk) + tr

(
HkC

−1
k RtkC

−1
k HH

k

))
, (4.41e)

Θ2 = (δ + 1)2 tr (RrkQk) . (4.41f)
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Note that the input covariance matrix Qk obtained in (4.41a) is found in an iterative way.

Moreover, we can observe that the matrix Zk, which is a variable of the Langrangian problem,

is not defined yet. The matrix Zk is found by verifying whether the solution for Qk given by

(4.41a) satisfy the KKT conditions given in (4.39).

We first verify the condition Qk � 0 given in (4.39b). From the solution found for Qk in

(4.41a), we write that the condition Qk � 0 is equivalent to state

Z̃k +
1

δ + 1
I+ νX−1 −Θ1R̃rk −Θ2S̃k � 0. (4.42)

and thus we can easily verify the condition Qk � 0.

Now, verifying the condition tr (ZkQk) = 0 given in (4.39c) and substituting the solution

(4.41a) for Qk into (4.39c), we have

tr (ZkQk) = 0

tr

(
ZkX

−1/2
k

(
Z̃k +

1

δ + 1
I+ νX−1 −Θ1R̃rk −Θ2S̃k

)
X

−1/2
k

)
= 0,

tr

(
Z̃k

(
Z̃k +

1

δ + 1
I+ νX−1 −Θ1R̃rk −Θ2S̃k

))
= 0. (4.43)

Denoting the eigen decomposition of Z̃k and ( 1
δ+1 I+ νX−1−Θ1R̃rk −Θ2S̃k) by UZΛZU

H
Z and

UΛUH , respectively, we have that (4.43) can be written as

tr
(
UZΛZU

H
Z

(
UZΛZU

H
Z +UΛUH

))
= 0,

tr (ΛZ)
2 + tr

(
UZΛZU

H
Z UΛUH

)
= 0. (4.44)

If we denote

UZ = U, (4.45)

the optimality of the input covariance matrix will not be affected since the optimality is

guaranteed by satisfying the KKT conditions, and so we have that equation (4.44) can be

rewritten as

tr (ΛZ)
2 + tr (ΛZΛ) = 0,

tr (ΛZ(ΛZ +Λ)) = 0,

tr

([
ΛZ1 0

0 ΛZ2

]([
ΛZ1 0

0 ΛZ2

]
+

[
Λ+ 0

0 Λ−

]))
= 0. (4.46)

where Λ+ and Λ− are the matrices formed by non-negative and negative entries of Λ,

respectively. The matrices ΛZ1 and ΛZ2 have the same dimensions of Λ+ and Λ−, respectively.

In order to find the matrix Zk that satisfies the condition (4.46) we can first affirm, from

both equations Zk � 0 in (4.39d) and Z̃k = X
1/2
k ZkX

1/2
k in (4.41b), that the matrix Z̃ is definite

positive, and thus the matrices ΛZ1 and ΛZ1 are also definite positive, i.e.,

ΛZ1 � 0 and ΛZ2 � 0. (4.47)

In sequel, substituting the eigen decompositions of both Z̃k and ( 1
δ+1I + νX−1 − Θ1R̃rk −
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Θ2S̃k), given by UZΛZU
H
Z and UΛUH respectively, in (4.42) we have

Z̃k +
1

δ + 1
I+ νX−1 −Θ1R̃rk −Θ2S̃k � 0,

UZΛZU
H
Z +UΛUH � 0, (4.48)

and using the statement made in (4.45), we can rewrite the equation (4.48) by

U

[
ΛZ1 +Λ+ 0

0 ΛZ2 +Λ−

]
UH � 0,

which is equivalent to state that

ΛZ1 +Λ+ � 0 and ΛZ2 +Λ− � 0. (4.49)

The only solution that satisfies (4.46), (4.47) and (4.49) is

ΛZ1 = 0, (4.50)

ΛZ2 = −Λ−. (4.51)

Therefore, we formulate the solution for the input covariance matrices that maximizes

the second-order approximation of the ergodic sum rate, given in equation (4.37). This

formulation follows some steps, which are summarized in Algorithm 4.1.

Algorithm 4.1 Optimization of the Multi-Cell Multi-User MIMO Ergodic Capacity

1: The input covariance matrices are first initialized to a scaled version of the identity,Q0
k =

(P/NrK)INr

2: Set the parameters δ and ν
3: while Capacity does not converge do
4: for each user k do
5: Evaluate the matrix Ck = I+

∑
j 6=k

HH
j Q

(i−1)
j Hj

6: Evaluate the parameters Θ1 and Θ2 using (4.41e) and (4.41f)
7: Evaluate the matrices Xk, R̃rk, S̃k using (4.16), (4.41c) and (4.41d)
8: Evaluate the matrices U and Λ, given that UΛUH = ( 1

δ+1I+ νX−1
k −Θ1R̃rk −Θ2S̃k)

9: Evaluate Z̃k = UZΛZU
H
Z using (4.45), (4.50) and (4.51)

10: Evaluate Q
(n)
k using (4.41a)

11: end for
12: Normalize the matrices Q

(i)
k in order to obey the per-BS power constraint.

13: Evaluate the sum rate and verify convergence
14: end while

In order to normalize the input covariance matrices and obey the per-BS power constraints,

we first map the uplink input covariance matrices Q
(i)
k of all users into the corresponding

downlink input covariance matrices Ω
(i)
k [15]. Next, we normalize these downlink input

covariance matrices Ω
(i)
k for all users by the trace of the downlink input covariance matrix

with maximum trace. This normalization is made in a suboptimal way, so that only the BS

satisfying the minimum value can transmit with full power and any other BS transmits with

a power lower than its power constraint.

The flow chart of the solution steps of our algorithm is shown in figure 4.2.
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Initialize uplink input covariance matrices

Set convergence parameter

Evaluate collectively the uplink input covariance matrices as a function of the
channel mean and covariance for each user, and as a function of the uplink

covariance matrices computed in the previous iteration

Evaluate the first or second-order approximation
as a function of the uplink input covariance matrices

Adjust the uplink input covariance matrices as needed to satisfy the
individual transmit power constraints

No

Yes

Convergence?

Figure 4.2: Flow chart of the proposed algorithm.

4.4 Simulations and Results

4.4.1 Scenario, Channel Model and Main Simulation Parameters

We assume the CoMP cell scenario consisting of 3 coordinated cells with BSs placed in

the center of each cell. Initially, one user is placed randomly in each cell. These users are

considered as the ones selected by a scheduling algorithm to transmit. The most relevant

parameters are the same considered in the simulations of Chapter 3 on Table 3.1 and the

spatial antenna correlations are fixed for all BSs and users as the same in (3.40) and (3.41)

[65].

4.4.2 A Multi-user Analysis of the Proposed Transmit Scheme

In figures 4.3(a), 4.3(b), 4.4(a), 4.4(b), 4.5(a), 4.5(b), 4.6(a) and 4.6(b) we compare the

average sum rate obtained with the proposed algorithms and the upper bound on the ergodic
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sum rate which corresponds to the perfect CSIT and performs an iterative water-filling [14]. In

figures both the number of transmit and receive antennas (Nt and Nr) and the Ricean factor κ

vary. The proposed algorithms consider the case where the ergodic sum rate is approximated

by only the first term (FOIC) and by the two first terms (SOIC) of the Taylor expansion. In

order to have a better view, we divide the SNRs range in low and high values.

In figures 4.3(a) and 4.3(b) we have the scenario with 2 transmit and receive antennas and

the Ricean factor κ equal to 0. We notice from figure 4.3(a) that, in low SNRs, the proposed

algorithms have similar performance and that the difference gap between them and the upper

bound is high. When the signal-to-noise ratio (SNR) increases, we note from figure 4.3(b),

that the performance of the proposed algorithms improves and the SOIC algorithm performs

close to the iterative water-filling algorithm. In figures 4.4(a) and 4.4(b) the Ricean factor

κ is increased to 3. In low SNRs the proposed algorithms have the same performance and

the difference gap between them and the upper bound is the same for the case with κ = 0.

But in high SNRs (figure 4.4(b)) the performance is a little bit different than the case with

κ = 0, we can note that the SOIC algorithm obtains good results but there is still a gap

between it and the iterative water-filling algorithm. Thus, we conclude that, when the Ricean

factor increases, the performance gap between the proposed algorithm FOIC and the iterative

water-filling one keeps the same, but the performance gap between the proposed algorithm

SOIC and the iterative water-filling one has a little decrease.

Figures 4.5(a), 4.5(b), 4.6(a) and 4.6(b) performs the same comparison when the number

of transmit and receive antennas is equal to 4 and the Ricean factor varies. From those

figures we observe the same behavior as for the case with 2 transmit and receive antennas.

The proposed algorithms obtain good performance results when compared to the iterative

water-filling algorithm and, when the Ricean factor increases, the performance gap between

the SOIC algorithm and the iterative water-filling becomes slightly greater at high SNRs.

As mentioned earlier, in the SOIC algorithm, we have to choose appropriately the parameter

δ in order to ensure the convergence of the algorithm. Figures 4.7(a) and 4.7(b) show the

ergodic sum rate convergence when the convergence parameter δ varies and the SNR values

are set to 12 dB and 15 dB, respectively. The considered scenario is Nt = Nr = 2 and Ricean

factor κ = 3. We note that in each figure, we have divergent curve, rapid convergent curve and

slow convergent curve. Moreover, we observe that the parameter δ must be chosen not too

small in order to have the convergence, and also not too high since, in the fast convergence,

the obtained ergodic sum rate after the convergence is smaller than the ergodic sum rate

obtained in the slow convergence case.

From all figures 4.3(a), 4.3(b), 4.4(a), 4.4(b), 4.5(a), 4.5(b), 4.6(a) and 4.6(b), we can

summarize our simulation analyzes in stating that the performance gap between the proposed

algorithms and the bound-achieving algorithm is small and that the convergence rate of the

proposed algorithm SOIC is high given that the parameter δ is rightly chosen.

4.4.3 A Single-user Analysis of the Proposed Transmit Scheme

We have compared our proposals with the iterative waterfilling algorithm proposed in [8].

This comparative algorithm is like a bound on the ergodic sum rate. The reason to compare

only with this technique is that we could not find any multi-user CoMP technique based on

statistical precoder.

In order to compare our proposals (FOIC and SOIC) with other techniques already existent,

we simplify our scenario to a single-user one. Thus, after performing the scheduling algorithm

to choose one user per cell, we select the user in which its joint channel given in (3.42) has
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the highest Frobenius norm.

The single-user techniques used in the comparison are:

◮ Mean-optimal signalling [54]: This technique ignores the covariance information and

treats the mean as if it were the true channel. The signalling is performed along the

eigen basis of the channel mean and “water-fills” over its eigenvalues.

◮ Covariance-optimal signalling [54]: This technique ignores the mean information and

transmits along the eigenvectors of the transmit covariance matrix.

Figures 4.8(a), 4.8(b), 4.9(a) and 4.9(b) show a comparison among the ergodic rate

obtained using the proposed techniques (FOIC and SOIC), the mean-optimal signalling and

the covariance-optimal signalling when the number of receive antennas and the Ricean

factor vary. The considered channel model to estimate the channel at the transmitter is

the Kronecker channel model given in equation (2.42).

Figure 4.8(a) shows the comparison with the number of transmit and receive antennas

equal to 2 and the Ricean factor κ equal to 3. We notice that the proposed algorithms obtain

quite similar performances and that these results are better than the result obtained with

the comparative techniques. When can also note that the comparative technique based on

the channel mean performs better then the other comparative technique, which is based on

the channel covariance. Figure 4.8(b) shows the comparison among the techniques with a

higher Ricean factor (κ = 10). We observe that the proposed algorithms also obtain a good

performance, with the mean-optimal signalling performance being closer to the proposed

techniques. This phenomenon is explained since this technique is based on the channel

mean matrix, and when the factor κ increases, the strength of the channel mean matrix in the

channel becomes greater. Thus, the results of the mean-optimal signalling are better when κ

increases.

Figure 4.9(a) shows the comparison among the techniques with a higher number of receive

antennas. The Ricean factor κ is set to 3. From this figure we note that the proposed

techniques obtain better performance and that the performance gap between the proposed

techniques FOIC and SOIC increases with a higher number of receive antennas. It is also

interesting to observe that the optimal-covariance signalling obtains better results than the

other comparative technique, except for very low SNR values. This happens because, when

the number of receive antennas increases, the channel is more correlated and since the

covariance-optimal technique is based on the channel correlation, it is expected that the

results of this technique become better in this case.

In figure 4.9(b) we have the comparison among the techniques in the same scenario (2

transmit antennas and 4 receive antennas) and with the Ricean factor κ = 10. We observe that

the performance gap between the proposed techniques is higher than in the scenario with 2

receive antennas and that the proposed techniques obtain better results. Moreover, as already

seen in the case with 2 transmit and receive antennas, the performance of the mean-optimal

signalling becomes better when the Ricean factor increases. The covariance-optimal signalling

also obtains good results since we have a scenario with more antennas, and so more correlated

channels.

Thus, we conclude that, in the single-user case scenario, the two proposed schemes

perform closer and the performance gap between them increases when the number of

receive antennas increases. Moreover, the proposed algorithms perform better than the other

comparated techniques in all simulated scenarios. Next, we simulate the same single-user

scenario but considering the proposed statistical channel model.
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4.4.4 A Single-user Analysis of the Proposed Transmit Scheme with the Proposed

Channel Model

In chapter 3 we proposed a partial CSIT model. This model is based on the channel

statistics and is obtained taking into account the temporal correlation parameter. Figures

4.10(a) and 4.10(b) show a comparison of the average rate obtained by the proposed technique

SOIC using both the Kronecker model and the proposed partial channel model. In order to

simulate the proposed CSIT model in the SOIC technique, we use the effective mean and

covariance obtained through this model (equations (3.33) and (3.23)) as channel mean and

covariance, respectively.

In figure 4.10(a) we have a scenario with 2 transmit and receive antennas and the Ricean

factor κ = 0. From this figure we note that the proposed CSIT model obtains better sum rate

results that the Kronecker channel model. This is explained because this model takes into

account the channel temporal variation and thus can model the real channel in a more precise

way.

Figure 4.10(b) shows the same comparison but now with a Ricean factor κ = 3. We note

from this figure that the performance of the proposed CSIT is again better than the Kronecker

model but the performance gap between them becomes smaller with a higher Ricean factor.

Figures 4.11(a), 4.11(b), 4.12(a) and 4.12(b) show the ergodic rate obtained using

the proposed techniques (FOIC and SOIC), the mean-optimal signalling and the

covariance-optimal signalling, in which the proposed techniques are considering the proposed

CSIT model. Figure 4.11(a) shows the comparison for a scenario with 2 transmit and receive

antennas and the Ricean factor κ = 3. We notice that the proposed techniques obtain better

performance than the other ones and that the performance of the proposed techniques FOIC

and SOIC are similar. Moreover, as the same case using Kronecker channel model, the

optimal-mean signalling outperforms the optimal-covariance signalling. In figure 4.11(b) the

Ricean factor is changed for a value κ = 10. The performance of the proposed techniques is

superior again and the performance of the mean-optimal signalling improves with a higher

Ricean factor. This has been already explained and it is due to the fact that, when the factor

κ increase, the strength of the channel mean matrix in the channel becomes greater.

In figure 4.12(a) the number of receive antennas is increased to 4 and the Ricean factor is

κ = 3. We note from the figure that the proposed techniques outperform the other compared

techniques. Moreover, the performance gap between the FOIC and SOIC is increased when

compared to the case with 2 receive antennas. As observed in the comparison using the

Kronecker channel model, the optimal-covariance signalling obtains better results than the

other compared technique, except for low SNR values. This has been already analyzed, and is

because the channel is more correlated when the number of receive antennas increases.

In figure 4.12(b) we have the same scenario (2 transmit antennas and 4 receive antennas)

and with the Ricean factor κ = 10. We also observe that the performance gap between the

proposed techniques is higher than in the scenario with 2 receive antennas. Moreover, we

observe that the mean-optimal signalling has improved performance when compared to the

case with the same number of receive antennas and Ricean factor κ = 3.

4.4.5 Analysis of the Phase Mismatch between the Uplink and Downlink Input

Covariance Matrices

In this thesis, based on the duality theory, we have assumed that the uplink channel is

the conjugate transpose of the corresponding dual downlink channel. In practical situations,

studies have shown that, in magnitude, the downlink and uplink channels differ only by a
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gain in all frequencies range, which it is easier to be compensated. But these studies have

also shown that the uplink and downlink channel phase plots deviate from each other in

phase by a few radians [70]. In order to analyze this aspect, we introduced a phase mismatch

in the channel model but consider that the proofs of our algorithm will not change, i.e., the

complete derivation of our proposal considering phase mismatches is left for a future study.

Accordingly, we consider that the uplink channel model is given by

HUL = HH
DL exp(jθ) (4.52)

where θ is the phase mismatch given in the downlink channel model. In simulations, we

consider that the parameter θ is a random variable generated uniformly within the interval

[−l, l], where l is given in degrees. Substituting the downlink channel model given by equation

(2.42) in (4.52), we have

HUL =

(√
κ

1 + κ
Hk +

√
1

1 + κ
Rr

1/2
k Hwk[n]Rt

1/2
k

)H

exp(jθ)

=

(√
κ

1 + κ
Hk exp(−jθ) +

√
1

1 + κ
Rr

1/2
k Hwk[n]Rt

1/2
k exp(−jθ)

)H

=

(√
κ

1 + κ
Hk exp(−jθ) +

√
1

1 + κ
(Rrk exp(−jθ))1/2Hwk[n](Rtk exp(−jθ))1/2

)H

Therefore, we simulate our proposed algorithm and consider as channel mean the matrix

Hk exp(−jθ) and as channel transmit and receive covariance the matrices (Rtk exp(−jθ)) and

(Rrk exp(−jθ)), respectively.

Figures 4.13(a), 4.13(b) and 4.13(c) show the average sum rate obtained with our proposed

algorithm SOIC using the Kronecker channel model which considers the phase mismatch

between uplink and downlink. The considered scenario has 2 transmit and receive antennas

and the interval of distribution of the phase mismatch parameter θ is varied. Figure 4.13(a)

shows the comparison for the case with Ricean factor κ = 0. We note that when the phase

mismatch parameter θ increases the performance of the algorithm degrades. Figures 4.13(b)

and 4.13(c) show the comparison when the Ricean factor is equal to 3 and 10, respectively.

From these figures we observe that when the Ricean factor increases, the influence of

the phase mismatch in the performance decreases. This happens since the presence of

line-of-sight (LOS) component in the channel, even a phase-mismatched one, makes the

channel more stable against random perturbations.

Figures 4.14(a), 4.14(b) and 4.14(c) show the average sum rate obtained with our proposed

algorithm SOIC using the channel model proposed in Chapter 3, and considering the phase

mismatch between uplink and downlink. The considered scenario has 2 transmit and receive

antennas and the interval of distribution of the phase mismatch parameter θ is varied.

Figure 4.14(a) shows the comparison for the case with Ricean factor κ = 0. Since the

curves obtained are too close we show the curves in an SNR interval (25.4995, 25.5) in order

to have a better view. We note that when the phase mismatch parameter θ increases the

performance of the algorithm degrades very slightly. Comparing with the Kronecker channel

model, we notice that the proposed channel model is more robust to phase mismatch since

the performance degradation obtained using the proposed channel model is very small when

the phase mismatch parameter increases.
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Figures 4.14(b) and 4.14(c) show the comparison when the Ricean factor is equal to 3 and

10, respectively. From these figures we observe, as with the Kronecker channel model, that

when the Ricean factor increases, the influence of the phase mismatch in the performance

decreases.

Hence, we summarize that the proposed statistical transmit scheme with the proposed

channel model is a robust scheme against the possible phase mismatch between the uplink

and downlink channels.

4.5 Summary

In this chapter, we optimized the input covariance matrix of a downlink multiuser

MIMO CoMP system aiming at the maximization of an ergodic sum rate approximation.

The scenario considers a multi-user CoMP system with joint processing, which is an

architecture of great interest for future wireless systems due, e.g., to macrodiversity and

good channel conditioning. Assuming that the transmitter has both the mean and covariance

of the channel, first- and second-order approximations of the ergodic sum rate were found

and the near-optimal input covariance matrix per user that maximizes the first- and

second-order approximation of the ergodic sum rate was derived using convex optimization

tools. The results shown that the performance gap between the proposed algorithms and the

bound-achieving algorithm is small and that the convergence rate of the proposed algorithms

is high given that the parameter δ is rightly chosen. Moreover, we analyzed the impact of

a phase mismatch between the uplink and the dual downlink channel model, which is a

more realistic model when considering the duality theorem. Simulation results shown that

the statistical precoder is robust against the inserted perturbation. Moreover, from these

simulation results, we could observe the channel model taking into account the channel

temporal correlation is more powerful against the phase mismatch than the Kronecker

channel model.
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Figure 4.3: Ergodic sum rate curves considering the Kronecker channel model, Nt = Nr = 2 and κ = 0.
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Figure 4.4: Ergodic sum rate curves considering the Kronecker channel model, Nt = Nr = 2 and κ = 3.
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Figure 4.5: Ergodic sum rate curves considering the Kronecker channel model, Nt = Nr = 4 and κ = 0.
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Figure 4.6: Ergodic sum rate curves considering the Kronecker channel model, Nt = Nr = 4 and κ = 3.
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Figure 4.7: Analysis of the convergence of the SOIC approach. Nt = Nr = 2 and κ = 3.
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Figure 4.8: Ergodic rate curves of the single-user scenario considering the Kronecker channel model
and Nt = Nr = 2.
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Figure 4.9: Ergodic rate curves of the single-user scenario considering the Kronecker channel model,
Nt = 2 and Nr = 4.
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Figure 4.10: Comparison of the ergodic rate curves obtained by SOIC approach considering the
Kronecker channel model and the proposed one. Scenario Nt = Nr = 2.
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Figure 4.11: Ergodic rate curves of the single-user scenario considering the proposed channel model,
Nt = Nr = 2.
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Figure 4.12: Ergodic rate curves of the single-user scenario considering the proposed channel model,
Nt = 2 and Nr = 4.
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Figure 4.13: Comparison of the ergodic sum rate curves obtained by SOIC approach considering the
Kronecker channel model and a phase mismatch between uplink and downlink channels.
Scenario Nt = Nr = 2.
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Figure 4.14: Comparison of the ergodic sum rate curves obtained by SOIC approach considering the
proposed channel model and a phase mismatch between uplink and downlink channels.
Scenario Nt = Nr = 2.



69

Chapter 5
Conclusions and Perspectives

Channel state information at the transmitter (CSIT) can improve the performance of

multi-user MIMO (MU-MIMO) wireless systems by means of precoding techniques. Most of

them assume the transmitter knows the channel exactly. Accurate CSIT may be obtained

reliably when the channel changes slowly but it it more difficult to acquire in situations where

the users are highly mobile. Thus, partial CSIT has a great importance in such scenarios and

has been widely studied in wireless communication.

We have considered a MU-MIMO coordinated multipoint (CoMP) scenario, in which a

number of base-station (BS)s form a coordination group and the BSs from this group transmit

to all users. In CoMP systems, besides the serving cell, the cells in the coordination group

are normally chosen as the ones that create the highest interference to the user. By this

approach, the received signal levels are improved and, at the same time, the inter-channel

interference (ICI) level is decreased since part of it has been changed to useful signal. A

gain from CoMP is obtained, not only by suppressing the interference sources but also by

benefiting from it. Moreover, due to the higher number of transmit antennas involved in the

joint transmission processing, better diversity gain can also be obtained. Hence, this scenario

is of great interest for future wireless systems, due to, e.g., the macrodiversity and good

channel conditioning.

In this thesis, we have proposed a generalization of a statistical CSIT model found in

literature for our considered scenario. This partial CSIT model relies on the stochastic

processes and estimation theories. Derived from a potentially outdated channel measurement

and from the channel statistics (mean and covariance), this proposed CSIT model consists of

a channel estimate and its error covariance, which act as the effective channel mean and

covariance, respectively. Simulation results have shown that the proposed channel model

obtains good results and that the performance gap between the proposed CSIT model and

the case considering perfect knowledge of the channel is negligible for low signal-to-noise

ratio (SNR) values and moderate for medium to high SNR values.

Moreover, from simulation results of the proposed CSIT, we have noticed that the proposed

CSIT model obtains better or worse performance depending of the chosen precoder technique.

Hence, our second contribution is to design a precoder that exploits the advantages of the

statistical channel model. More specifically, our second contribution consists of deriving a

first- and second-order approximation of the ergodic sum rate for a MU-MIMO CoMP system

considering that the transmitter has access to statistical channel state information (CSI),

while the receiver has access to instantaneous CSI. We use the duality theory [14, 15] to
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compute the downlink MU-MIMO CoMP ergodic sum-rate since it states that the achievable

sum-rate of the downlink MU-MIMO channel is equal to the achievable sum rate of the uplink

MU-MIMO channel. After that, we use convex optimization tools to find covariance matrices

of the transmitted signal (known as input covariance matrices) that maximize the first- and

second-order approximation of the MU-MIMO CoMP ergodic sum-rate.

The simulation results have shown that the performance gap between the proposed

algorithms and the bound-achieving algorithm is small and that the convergence rate of

the proposed algorithms is high given that the convergence parameter δ is rightly chosen.

Moreover, since in literature we only found techniques that consider a single-user scenario,

we transform our multi-user scenario into a single-user one by choosing the user with channel

of highest Frobenius norm and compare to these single-user techniques from the literature.

Simulation results have shown that our proposed precoder techniques obtain good results

compared to other techniques. Moreover, we have shown that the proposed CSIT model

performs better than the Kronecker channel model and that this happens since the proposed

model takes into account the channel temporal variation and thus it can model the real

channel in a more precise way. We have also analyzed the phase mismatch between the uplink

and the dual downlink channel model, which is a more realistic model when considering the

duality theorem.

The next steps of this thesis are concentrated in:

◮ We can see from simulation results in Section 3.2 (Figures 3.4(a), 3.4(b), 3.5(a) and 3.5(b))

that the proposed CSIT model has a loss of performance as a cost to reduce the amount

of feedback (to reduce the number of symbols NS in each block). It is interesting to

find a way of quantifying this reduction of feedback information and to make a trade-off

between loss of performance and reduction of feedback. We judge this analysis to be

important since it quantifies the loss of performance obtained with the proposed CSIT

model compared to the economy in the amount of feedback information.

◮ As already mentioned in section 4.3, the power normalization used in the proposed

algorithms is suboptimal so that only the BS satisfying the minimum value can transmit

with full power and any other BS transmits with a power lower than its power constraint.

We judge interesting to investigate other power allocation algorithms that can utilize the

full power at each BS.

◮ In Section 4.4, Figures 4.7(a) and 4.7(b), we have seen that the parameter δ must be

chosen not to small in order to have the convergence, but not to high since, in the fast

convergence, the obtained ergodic sum rate after the convergence is smaller than the

ergodic sum rate obtained in the slow convergence case. As a next step in this topic, we

will investigate a way to obtain the parameter δ as a closed form, since in simulations of

this thesis this parameter δ was found by exhaustive search for each scenario and each

SNR value.

◮ Some studies have shown that the uplink and downlink channel phase plots deviate

from each other in phase by a few radians when considering the duality theorem. In

Subsection 4.4.5 we have analyzed the impact of this phase mismatch between the

downlink and uplink channels and considered that the proofs of our algorithm will not

change. As a future work, we will accomplish the complete derivation of this proposal

considering phase mismatches



Appendix A
Mathematical Manipulations and

Proofs

A.1 Proof of Equation (4.7)

In section 4.1 we have shown that the objective function in (4.6) can be written as equation

(4.7). We show the mathematical manipulations to obtain this result:
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If we use the propriety that |AB| = |A||B|, we can write (A.1) as:
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In order to compute the expectation in (A.4), we use [Hwk]t to denote the t-th column of

Hwk and λt the t-th diagonal element of Λk. Hence, we have
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It is not difficult to note that the expectation E {HwkΥkHwk} is given by
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for all q.

Considering (A.13) and analyzing the case when q = t, we have that equation (A.12) can be

rewritten as

NbNt∑

t=1

υt

(
Nr∑

r=1

λrE
{
|[Hwk]r,t|2[Hwk]t

}
)

=

NbNt∑

t=1

υt




Nr∑

r=1

λrE








|[Hwk]r,t|2[Hwk]1,t
...

|[Hwk]r,t|2[Hwk]p,t
...

|[Hwk]r,t|2[Hwk]Nr,t











. (A.14)

For r 6= p we have to evaluate E
{
|[Hwk]r,t|2[Hwk]p,t

}
. It

is not difficult to show that E
{
|[Hwk]r,t|2[Hwk]p,t

}
= 0, since

E
{
|[Hwk]r,t|2[Hwk]p,t

}
= E[Hwk]r,t

{
E[Hwk]p,t

{
|[Hwk]r,t|2[Hwk]p,t||Hwk]r,t|2

}}
. And when r = p, we

have that E
{
|[Hwk]r,t|2[Hwk]r,t

}
is proportional to the 3-rd order distribution of [Hwk]r,t and,

since [Hwk]r,t is a Gaussian random variable, its moments of odd order are zero. Therefore,

E
{
|[Hwk]r,t|2[Hwk]r,t

}
= 0.

Analyzing now the case q 6= t in (A.12), we have:

NbNt∑

t=1

υt

(
Nr∑

r=1

λrE
{
[Hwk]t[Hwk]

∗
r,t[Hwk]r,q

}
)

=

NbNt∑

t=1

υt

(
E

{
[Hwk]t[Hwk]

H
t Λk[Hwk]q

})

=

NbNt∑

t=1

υt

(
E[Hwk]t

{
[Hwk]t[Hwk]

H
t ΛkE[Hwk]q {[Hwk]q|[Hwk]t}

})
.

(A.15)

The expectation E[Hwk]q {[Hwk]q|[Hwk]t} = 0. Therefore, we can conclude that the

expectation E

{
HwkΥkHw

H
k ΛkHwk

}
is equal to zero and then E {tr (BC)} = 0.

In order to prove E
{
tr
(
BHC

)}
= 0, we use the same eigen decomposition used to prove
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E {tr (BC)} = 0. This leads us to the following result:

E
{
tr
(
BHC

)}
= E

{
tr
(
C

−1/2
k Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k C−1

k Rt
1/2
k Hw

H
k Rr

1/2
k QkHkC

−1/2
k

)}
,

= E

{
tr
(
C

−1/2
k Rt

1/2
k VkV

H
k Hw

H
k UkΛkU

H
k HwkVkΥkV

H
k Hw

H
k UkU

H
k Rr

1/2
k QkHkC

−1/2
k

)}
,

= tr
(
C

−1/2
k Rt

1/2
k VkE

{
Hw

H
k ΛkHwkΥkHw

H
k

}
UH

k Rr
1/2
k QkHkC

−1/2
k

)
. (A.16)

We can show in a similar way than E

{
HwkΥkHw

H
k ΛkHwk

}
that E

{
Hw

H
k ΛkHwkΥkHw

H
k

}
=

0. Hence, E
{
tr
(
BHC

)}
= 0.

A.5 Evaluation of E {tr (AC)} and E
{
tr
(
BBH

)}

In order to evaluate E {Tr (AC)} we denote the eigen decomposition of Rr
1/2
k QkRr

1/2
k by

UkΛkU
H
k . Hence, we have

E {Tr (AC)} = E

{
Tr
(
C

−1/2
k HH

k QkHkC
−1
k Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k C

−1/2
k

)}
,

= E

{
Tr
(
C

−1/2
k HH

k QkHkC
−1
k Rt

1/2
k VkV

H
k Hw

H
k UkΛkU

H
k HwkVkV

H
k Rt

1/2
k C

−1/2
k

)}
,

= Tr
(
C

−1/2
k HH

k QkHkC
−1
k Rt

1/2
k VkE

{
Hw

H
k ΛkHwk

}
VH

k Rt
1/2
k C

−1/2
k

)
. (A.17)

The expectation E

{
Hw

H
k ΛkHwk

}
can be written as

E

{
Hw

H
k ΛkHwk

}
= E

{
Nr∑

r=1

λr[Hw
H
k ]r[Hw

H
k ]

H
r

}
,

=

Nr∑

t=1

λtE

{
[Hw

H
k ]t[Hw

H
k ]

H
t

}
,

=

Nr∑

r=1

λrINbNt ,

= tr
(
Rr

1/2
k QkRr

1/2
k

)
INbNt . (A.18)

Substituting the result of (A.18) into (A.17), we have

E {Tr (AC)} = Tr
(
C

−1/2
k HH

k QkHkC
−1
k Rt

1/2
k Vk tr

(
Rr

1/2
k QkRr

1/2
k

)
INbNtV

H
k Rt

1/2
k C

−1/2
k

)
,

= tr
(
Rr

1/2
k QkRr

1/2
k

)
Tr
(
HH

k QkHkC
−1
k RtkC

−1
k

)
. (A.19)

Then, E {tr (AC)} = tr
(
Rr

1/2
k QkRr

1/2
k

)
tr
(
HH

k QkHkC
−1
k RtkC

−1
k

)
. In order to evaluate

E
{
Tr
(
BBH

)}
we use the eigen decomposition of Rt

1/2
k C−1

k Rt
1/2
k by VkΥkV

H
k . Therefore, we

have

E
{
Tr
(
BBH

)}
= E

{
Tr
(
C

−1/2
k HH

k QkRr
1/2
k HwkRt

1/2
k C−1

k Rt
1/2
k Hw

H
k Rr

1/2
k QkHkC

−1/2
k

)}
,

= E

{
Tr
(
C

−1/2
k HH

k QkRr
1/2
k UkU

H
k HwkVkΥkV

H
k Hw

H
k UkU

H
k Rr

1/2
k QkHkC

−1/2
k

)}
,

= Tr
(
C

−1/2
k HH

k QkRr
1/2
k UkE

{
HwkΥkHw

H
k

}
UH

k Rr
1/2
k QkHkC

−1/2
k

)
. (A.20)
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The expectation E

{
HwkΥkHw

H
k

}
can be written as

E

{
HwkΥkHw

H
k

}
= E

{
NbNt∑

t=1

υt[Hwk]t[Hwk]
H
t

}
,

=

NbNt∑

t=1

υtE
{
[Hwk]t[Hwk]

H
t

}
,

=

NbNt∑

t=1

υtINr ,

= tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)
INr . (A.21)

Substituting the result of (A.21) into (A.20), we have

E
{
Tr
(
BBH

)}
= Tr

(
C

−1/2
k HH

k QkRr
1/2
k Uk tr

(
Rt

1/2
k C−1

k Rt
1/2
k

)
INrU

H
k Rr

1/2
k QkHkC

−1/2
k

)
,

= tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)
Tr
(
C

−1/2
k HH

k QkRrkQkHkC
−1/2
k

)
. (A.22)

Therefore, E
{
Tr
(
BBH

)}
= tr

(
Rt

1/2
k C−1

k Rt
1/2
k

)
Tr
(
C

−1/2
k HH

k QkRrkQkHkC
−1/2
k

)
.

A.6 Evaluation of E {tr (C2)}

In order to evaluate E
{
Tr
(
C2
)}

we denote the eigen decomposition of Rr
1/2
k QkRr

1/2
k by

UkΛkU
H
k and of Rt

1/2
k C−1

k Rt
1/2
k by VkΥkV

H
k . Hence, we have

E
{
tr
(
C2
)}

=E

{
tr
(
C

−1/2
k Rt

1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k C−1

k Rt
1/2
k Hw

H
k Rr

1/2
k QkRr

1/2
k HwkRt

1/2
k C

−1/2
k

)}
,

=E

{
tr
(
C

−1/2
k Rt

1/2
k VkV

H
k Hw

H
k UkΛkU

H
k HwkVkΥkV

H
k Hw

H
k UkΛkU

H
k HwkVkV

H
k Rt

1/2
k C

−1/2
k

)}
,

=tr
(
C

−1/2
k Rt

1/2
k VkE

{
Hw

H
k ΛkHwkΥkHw

H
k ΛkHwk

}
VH

k Rt
1/2
k C

−1/2
k

)
,

=tr

(
C

−1/2
k Rt

1/2
k VkE

{
Nr∑

t=1

λt[Hw
H
k ]t[Hw

H
k ]

H
t Υk

Nr∑

p=1

λp[Hw
H
k ]p[Hw

H
k ]

H
p

}
VH

k Rt
1/2
k C

−1/2
k

)
,

=

Nr∑

t=p=1

λ2
t tr
(
C

−1/2
k Rt

1/2
k VkE

{
[Hw

H
k ]t[Hw

H
k ]Ht Υk[Hw

H
k ]t[Hw

H
k ]Ht

}
VH

k Rt
1/2
k C

−1/2
k

)

+

Nr∑

t6=p;t=1;p=1

λtλp tr
(
C

−1/2
k Rt

1/2
k VkE

{
[Hw

H
k ]t[Hw

H
k ]

H
t Υk[Hw

H
k ]p[Hw

H
k ]

H
p

}
VH

k Rt
1/2
k C

−1/2
k

)
.

(A.23)
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Firstly, evaluating the first term of (A.23), we have

=

Nr∑

t=p=1

λ2
tTr

(
C

−1/2
k Rt

1/2
k VkE

{
[Hw

H
k ]t[Hw

H
k ]

H
t Υk[Hw

H
k ]t[Hw

H
k ]

H
t

}
VH

k Rt
1/2
k C

−1/2
k

)
,

=

Nr∑

t=p=1

λ2
tTr

(
E

{
[Hw

H
k ]t[Hw

H
k ]Ht Υk[Hw

H
k ]t[Hw

H
k ]Ht

}
VH

k Rt
1/2
k C−1

k Rt
1/2
k Vk

)
,

=

Nr∑

t=p=1

λ2
tTr

(
E

{
[Hw

H
k ]t[Hw

H
k ]

H
t Υk[Hw

H
k ]t[Hw

H
k ]

H
t

}
VH

k VkΥkV
H
k Vk

)
,

=

Nr∑

t=p=1

λ2
tTr

(
E

{(
[Hw

H
k ]Ht Υk[Hw

H
k ]t

)2})
,

=

Nr∑

t=p=1

λ2
tTr

(
E

{
NbNt∑

z=1

υz[Hwk]t,z [Hwk]
∗
t,z

NbNt∑

y=1

υy[Hwk]t,y[Hwk]
∗
t,y

})
,

=

Nr∑

t=p=1

λ2
tTr

(
NbNt∑

z=1

NbNt∑

y=1

υyυzE
{
[Hwk]t,z[Hwk]

∗
t,z[Hwk]t,y[Hwk]

∗
t,y

}
)
,

=

Nr∑

t=p=1

λ2
tTr




NbNt∑

z=y=1

υ2
zE

{(
[Hwk]t,z[Hwk]

∗
t,z

)2}
+

NbNt∑

z 6=y,z=1,y=1

υyυzE
{
[Hwk]t,z[Hwk]

∗
t,z [Hwk]t,y[Hwk]

∗
t,y

}

 .

(A.24)

We can note that the expectation E

{(
[Hwk]t,z[Hwk]

∗
t,z

)2}
of (A.24) is the second-order

moment of random variable |[Hwk]t,z| and thus we can find that E
{(

[Hwk]t,z[Hwk]
∗
t,z

)2}
= 2. On

the other hand, the expectation E
{
[Hwk]t,z[Hwk]

∗
t,z[Hwk]t,y[Hwk]

∗
t,y

}
can be found to be equal

to 1 since [Hwk]t,z and [Hwk]t,y are i.i.d random variables. Therefore, (A.24) is written as

=

Nr∑

t=p=1

λ2
t tr




NbNt∑

z=y=1

2υ2
z +

NbNt∑

z 6=y,z=1,y=1

υyυz


 . (A.25)

It is not difficult to show that (A.25) is

=

Nr∑

t=p=1

λ2
t tr




NbNt∑

z=y=1

υ2
z +

(
NbNt∑

z=1

υz

)2

 ,

=

Nr∑

t=1

λ2
t tr

(
tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)2
+
(
tr
(
Rt

1/2
k C−1

k Rt
1/2
k

))2)
,

=

Nr∑

t=1

λ2
t tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)2
+

Nr∑

t=1

λ2
t

(
tr
(
Rt

1/2
k C−1

k Rt
1/2
k

))2
. (A.26)

Now, evaluating the second term of (A.23), we have

=

Nr∑

t6=p;t=1;p=1

λtλpTr
(
C

−1/2
k Rt

1/2
k VkE

{
[Hw

H
k ]t[Hw

H
k ]

H
t Υk[Hw

H
k ]p[Hw

H
k ]

H
p

}
VH

k Rt
1/2
k C

−1/2
k

)
,

=

Nr∑

t6=p;t=1;p=1

λtλpTr
(
E

{
[Hw

H
k ]t[Hw

H
k ]Ht Υk[Hw

H
k ]p[Hw

H
k ]Hp

}
VH

k Rt
1/2
k C−1

k Rt
1/2
k Vk

)
,

=

Nr∑

t6=p;t=1;p=1

λtλpTr
(
E

{
[Hw

H
k ]t[Hw

H
k ]

H
t Υk[Hw

H
k ]p[Hw

H
k ]

H
p

}
Υk

)
. (A.27)
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Since [Hw
H
k ]t[Hw

H
k ]Ht and [Hw

H
k ]p[Hw

H
k ]Hp are independent we can write (A.27) as

=

Nr∑

t6=p;t=1;p=1

λtλpTr
(
E

{
[Hw

H
k ]t[Hw

H
k ]

H
t

}
ΥkE

{
[Hw

H
k ]p[Hw

H
k ]

H
p

}
Υk

)
,

=

Nr∑

t6=p;t=1;p=1

λtλp tr (INbNtΥkINbNtΥk) ,

=

Nr∑

t6=p;t=1;p=1

λtλp tr
(
Rt

1/2
k C−1

k Rt
1/2
k

)2
. (A.28)

Therefore, (A.23) can be written as

E
{
Tr
(
C2
)}

=

Nr∑

t=1

λ2
t tr
(
Rt

1/2
k C−1

k Rt
1/2
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+

Nr∑

t=1

λ2
t

(
tr
(
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k Rt
1/2
k

))2
+

+

Nr∑
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λtλp tr
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Rt
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k C−1

k Rt
1/2
k

)2
. (A.29)

It can be noted that

Nr∑

t=1

λ2
t tr
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Rt

1/2
k C−1

k Rt
1/2
k

)2
+

Nr∑
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= tr
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. (A.30)

After some mathematical manipulations, (A.29) can be written as

E
{
Tr
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= tr
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k Rt
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tr
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k
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