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Preface

In the last years, the area of telecommunications has bgmriercing an effervescent period in its development. A
wide number of new strategies, techniques and applicatians arisen from the communications-related societies.
The development has been noticed in several directionslesis, wireline, signal processing, optics and electremag
netics. Theoretical advances with the possibilities taifg research results and proposals into industrial/corriale
applications allowed a fertile field for improvements on m#opics of telecommunications. Further, this offers a good
opportunity to focus on key developments in the area dutieglast years and outline emerging trends which may
drive research and industrial activities in the next years.

During the organization of the VI International Telecomnoations Symposium (ITS2006), co-sponsored by
the Brazilian Telecommunication Society (SBrT) and IEEET@aunications Society (COMSOC), we have had the
opportunity to reviewing papers and tutorials of severlbsaas in telecommunications and the privilege of knowing
how much outstanding work is being done all over the worladyvfling a great state-of-art of edge-like subjects.
This book is a collection of manuscripts selected from thases accepted for publication into the Proceedings of
the ITS2006. Since our main idea is to provide a generalatiland deep material on hot topics, we have chosen
some of the proposals for tutorials and requested extendedsaripts for being chapters of this piece. We are deeply
indebt with the General Chairman of the ITS2006, Prof. Joésar Moura Mota, by providing us the best conditions
to go further with our project. We could not forget to thank tooperation and help of all contributors of the book,
such distinguished researchers, who have, in essence,thiadeork possible. This collection is the representation
of their work and we made our best in order to allow their warkave the merit they deserve. We hope we could fit
their expectations.

This book is aimed at the advanced level and is suitable Bgate students and researchers. The material can be
used as advanced special topics to be used for independdyt &ir example, an introduction for graduate students
who wish to conduct research in the areas covered by theaisapitthe book. Engineers may appreciate the up-to-
date tutorial exposition to timely topics. Some technadsgieviewed here are being (or even already) incorporated
into commercial systems.

The book begins with a chapter by M. Debbah on wireless cHanodeling and the limits of performance by
means of the use of information-theoretic tools. Such natsrimprescriptible for those interested in capacityits
of performance and evaluation of wireless systems.

The second chapter by Suyaratal discusses the concept of unsupervised signal processiitg different
branches. Starting from equalization of single user systiey cover up to the multiuser MIMO case the blind recov-
ering information strategies in a very general backgroulosvéng the application in different contexts of informauti
systems.

Chapter three, by Almeidat al states the modeling of wireless communication systems tgnsief tensor ap-
proach. Such an elegant tool allows the generalization ofyd#ferent problems in telecommunication into the same
framework.

Oliveira Netoet al study the problem of power control in wireless systems inpgidvafour. The aspects of op-
timization of such important resource in wireless netwaskdiscussed through a number of strategies showing the
great potential of those methods.

Chapter five by Zerlin and Nossek discusses the topic of deyss optimization. The rationale of such approach
differs from the most used ones by the fact of consideratfoth® interrelations among the different layers of the
system to provide a global gain of performance.

The very updated subject of power line communications igoedby M. V. Ribeiro in chapter six. The importance
of such information transmission strategy is discussed &gma of the different possibilities of handling with the mai



VI Preface

issues which arise in such systems as well as the countenneséger them, based on intelligent signal processing,
such as fuzzy filtering.

B. Dorizzi covers in Chapter seven the most advanced trendimetrics for user recognition. This subject has
been receiving an increasing interest of researchers feveral countries and different communities (e.g. biomadic
signal processing, machine learning, communications}adtiee great impact such techniques and applications have
into access control and monitoring. The tutorial presehere states the state-of-art of those methods.

Finally, Rodriguez-Esqueret alin Chapter eight discuss about the devices and applicadiggtsotonic structures.
The number of possible applications, e.g. couplers, waidegland lasers, makes this topic a very important one in
telecommunication, specially when we are observing theeaence of very different services in telecommunications
requiring very high data rates.

Fortaleza Ceara, Brazil, Charles Casimiro Cavalcante
September, 2006 Ricardo Fialho Colares
Paulo Cezar Barbosa
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1

Information Theory and Wireless Channel Modeling

Mérouane Debbah

Mobile Communications Group, Institut Eurecom, 2229 Ralgs Cretes, B.P. 193, 06904 Sophia Antipolis CEDEX, France
debbah@urecom fr

1.1 Introduction

The problem of modelling channels is crucial for the effitidasign of wireless systems [1, 2, 3]. The wireless
channel suffers from constructive/destructive interfieresignaling [4, 5]. This yields a randomized channel with
certain statistics to be discovered. Recently ([6, 7]),ied to increase spectral efficiency has motivated the use
of multiple antennas at both the transmitter and the recside. Hence, in the case of i.i.d Gaussian entries of the
MIMO link and perfect channel knowledge at the receiverais lbeen proved [8] that the ergodic capacity increase
is min(n,.,n;) bits per second per hertz for every 3dB increasei$ the number of receiving antennas ands the
number of transmitting antennas) at high Signal to NoiséoRSNR)'. However, for realistitchannel models, results
are still unknown and may seriously put into doubt the MIM(payAs a matter of fact, the actual design of efficient
codes is tributary of the channel model available: the tratter has to know in what environment the transmission
occurs in order to provide the codes with the adequate ptiepeas a typical example, in Rayleigh fading channels,
when coding is performed, the Hamming distance (also knasvin@ number of distinct components of the multi-
dimensional constellation) plays a central role whereasmmiaing the Euclidean distance is the commonly approved
design criteria for Gaussian channels (see Giraud and Be[8) or Boutros and Viterbo [10]).

As a consequence, channel modelling is the key in betterratedeling the limits of transmissions in wireless
and noisy environments. In particular, questions of thenfdwhat is the highest transmission rate on a propagation
environment where we only know the mean of each path, thaweeiof each path and the directions of arrival?” are
crucially important. It will justify the use (or not) of MIM@echnologies for a given state of knowledge.

Let us first introduce the modelling constraints. We assumae the transmission takes place between a mobile
transmitter and receiver. The transmitter hagsntennas and the receiver hgsantennas. Moreover, we assume that
the input transmitted signal goes through a time variamdirfilter channel. Finally, we assume that the interfering
noise is additive white Gaussian.

NG NG
LY

Y

Fig. 1.1.MIMO channel representation.

The transmitted signal and received signal are related as:

! In the single antenna Additive White Gaussian Noise (AWGh8rmel, 1 bit per second per hertz can be achieved with every
3dB increase at high SNR.
2 By realistic, we mean models representing our state of kedge of reality which might be different from reality.
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Y(ﬁ) = \/nzt/Hanm (T,t)x(t - T)dT + n(t) (1.2)
with
H, xn,(1,t) = / H, n,(f t)e? 7 df (1.2)

pis the received SNR (total transmit power per symbol verstad spectral density of the noise),f andr denote
respectively time, frequency and delgyy) is then, x 1 received vectork(t) is then; x 1 transmit vectorn(t) is
ann, x 1 additive standardized white Gaussian noise vector.

In the rest of the paper, we will only be interested in the @iemacy domain modelling (knowing that the impulse
response matrix can be accessed through an inverse Foarisfdrm according to relation 1.2). We would like to pro-
vide some theoretical grounds to model the frequency respovatrixH ( f, ¢) based on a given state of knowledge. In
other words, knowing only certain things related to the cteDirections of Arrival (DoA), Directions of Departure
(DoD), bandwidth, center frequency, number of transngtand receiving antennas, number of chairs in the room...),
how to attribute a joint probability distribution to the ersh;;( f,t) of the matrix:

hit(fot) oo ... hin, (f.1)

H, o, (f 1) = Lo f (1.3)

B r (o) - T (F21)

This question can be answered in light of the Bayesian piiityatheory and the principle of maximum
entropy. Bayesian probability theory has led to a profoumebtetical understanding of various scientific areas
[11, 12, 13, 14, 15, 16, 17, 18] and has shown the potentiahttbpy as a measure of our degree of knowledge
when encountering a new problem. The principle of maximutrogy® is at present the clearest theoretical justifica-
tion in conducting scientific inference: we do not need a madgropy maximization creates a model for us out of the
information available. Choosing the distribution with gtest entropy avoids the arbitrary introduction or assionpt
of information that is not availabteBayesian probability theory improves on maximum entropgkpressing some
prior knowledge on the model and estimating the paramefeéh®anodel.

As we will emphasize all along this paper, channel modeliingot a science representing reality but only our
knowledge of reality as thoroughly stated by Jaynes in [R@nswers in particular the following question: based on
a given state of knowledge (usually brought by raw data @rpnformation), what is the best model one can make?
This is, of course, a vague question since there is no seiitlon of what is meant by best. But what do we mean
then by best? In this contribution, our aim is to derive a medgch is adequate with our state of knowledge. We
need a measure of uncertainty which expresses the cortstodiour knowledge and the desire to leave the unknown
parameters to lie in an unconstrained space. To this end; pwasibilities are offered to us to express our uncertainty
However, we need an information measure which is consigtembplying to certain common sense desiderata, see
[21] to express these desiderata and for the derivationtodgy) and easy to manipulate: we need a general principle
for translating information into probability assignmeBhtropy is the measure of information that fulfills this erig.
Hence, already in 1980, Shore et al. [21] proved that thecpi@ of maximum entropy is the correct method of
inference when given new information in terms of expectddags They proved that maximizing entropy is correctin
the following sense: maximizing any function but entropyl giad to inconsistencies unless that function and entropy
have the same maximnThe consistency argument is at the heart of scientificémfee and can be expressed through
the following axion§:

3 The principle of maximum entropy was first proposed by Jayh2s13] as a general inference procedure although it was firs
used in Physics.

4 Keynes named it judiciously the principle of indifferend®] to express our indifference in attributing prior valwesen no
information is available.

® Thus, aiming for consistency, we can maximize entropy withass of generality.

5 The consistency property is only one of the required pragsefor any good calculus of plausibility statement. In f&T Cox
in 1946 derived three requirements known as Cox’s Theor2n[2

e Divisibility and comparability: the plausibility of of aatement is a real number between 0 (for false) and 1 (for aind)is
dependent on information we have related to the statement.
Common sense: Plausibilities should vary with the assessofi@lausibilities in the model.
Consistency: If the plausibility of a statement can be agtin two ways, the two results should be equal.
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Lemma 1. If the prior informationl; on which is based the channel mo#] can be equated to the prior information
I, of the channel moddl, then both models should be assigned the same probabilitjpdison P(H) = P(H;) =
P(H,).

Any other procedure would be inconsistent in the sensellgathanging indices 1 and 2, we could then generate
a new problem in which our state of knowledge is the same buthith we are assigning different probabilities.
More precisely, Shore et al. [21] formalize the maximum epyrapproach based on four consistency axioms stated
as follows:

Uniqueness: If one solves the same problem twice the saméheaythe same answer should result both times.
Invariance: If one solves the same problem in two differ@atrdinate systems then the same answer should result
both times.

e System independence: It should not matter whether one atzar independent information about independent
systems separately in terms of different densities or teageh terms of a joint density.

e Subsetindependence: It should not matter whether one taeahdependent subset of system states in terms of a
separate conditional density or in terms of the full systemsity.

These axioms are based on the fundamental principle thatrdlalem can be solved in more than one way, the results
should be consistent. Given this statement in mind, thesflerobability theory should lead every person to the same
unique solution, provided each person bases his model asathe informatio.

Moreover, the success over the years of the maximum entrgpsoach (see Boltzmann’s kinetic gas law, [23]
for the estimate of a single stationary sinusoidal frequefie] for estimating the spectrum density of a stochastic
process subject to autocorrelation constraints, [24] sbimeating parameters in the context of image reconstractio
and restoration problems, [25] for applying the maximunmepy principle on solar proton event peak fluxes in order
to determine the least biased distribution) has shown thsirtformation tool is the right way so far to express our
uncertainty.

Let us give an example in the context of spectral estimatiothe powerful feature of the maximum entropy
approach which has inspired this paper. Suppose a stochpastiess:; for which p + 1 autocorrelation values are
known i.eE(z;x;1x) = 7, k = 0, ..., p for all 2. What is the consistent model one can make of the stochastiegs
based only on that state of knowledge, in other words the ivaldieh makes the least assumption on the structure of
the signal? The maximum entropy approach creates for us alrand shows that, based on the previous information,
the stochastic process i9® auto-regressive (AR) order model process of the form [14]:

p
T = — E arTi ) + b;
k=1

where theb; are i.i.d zero mean Gaussian distributed with variamt¢eand a;, as, .., a, are chosen to satisfy the
autocorrelation constraints (through Yule-Walker equrag).

In this contribution, we would like to provide guidelines fireating models from an information theoretic point of
view and therefore make extensive use of the principle ofimam entropy together with the principle of consistency.

1.2 Some Considerations

1.2.1 Channel Modelling Methodology

In this contribution, we provide a methodology (alreadycassfully used in Bayesian spectrum analysis [23, 17]) for
inferring on channel models. The goal of the modelling mdtiogy is twofold:

" In all the rest of the document, the consistency argumenbeiteferred to as Axiom 1.

8 It is noteworthy to say that if a prior distribution Q of thetiesated distribution P is available in addition to the expeovalues
constraints, then the principle of minimum cross-entraplfi¢Ch generalizes maximum entropy) should be applied. Tineiple
states that, of the distribution P that satisfy the constsaone should choose the one which minimizes the fundtiona

D(P,Q) = /P(x)log (%) dx

Minimizing cross-entropy is equivalent to maximizing ey when the prioi is a uniform distribution. Intuitively, cross-
entropy measures the amount of information necessary twehihe prioiQ into the posterioP. If measured data is available,
@ can be estimated. However, one can only obtain a numericalffr P in this case (which is not always useful for optimization
purposes). Moreover, this is not a easy task for multidirioerad vectors such as ved(). As a consequence, we will always
assume a uniform prior and use therefore the principle ofimax entropy.
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to define a set of rules, called hereaftensistency axiomsvhere only our state of knowledge needs to be defined.
to use a measure of uncertainty, called hereaitémopy in order to avoid the arbitrary introduction or assumption
of information that is not available.

In other words, if two published papers make the same assumsph the abstract (concrete buildings in Oslo
where one avenue...), then both papers should provide ithe slaannel model.

To achieve this goal, in all this document, the following ggdure will be applied: every time we have some in-
formation on the environmen&d not make assumptions on the mégele will ask a question based on that the
information and provide a model taking into account thabiinfation and nothing more! The resulting model and
its compliance with later test measurements will justifyettter the information used for modelling was adequate
to characterize the environment in sufficient details. emehen asked the question, “what is the consistent model
one can make knowing the directions of arrival, the numbescatterers, the fact that each path has zero mean and
a given variance?” we will suppose that the information pited by this question is unquestionable and true i.e the
propagation environment depends on fixed steering ve@ac$ path has effectively zero mean and a given variance.
We will suppose that effectively, when waves propagate; timince onto scatterers and that the receiving antenna
sees these ending scatterers through steering diredfoes. we assume this information to be true, we will construct
the model based on Bayesian todls.

To explain this point of view, the author recalls an expenimaade by his teacher during a tutorial explanation on
the duality behavior of light: photon or wave. The teach@kttwo students of the class, called here A and B for

(1) ¥

/ [ \ @)

®)

Fig. 1.2.Duality wave-corpuscule?

simplicity sake. To student A, he showed view (1') (see Fégglir2) of a cylinder and to student B, he showed view
(2") of the same cylinder. For A, the cylinder was a circle dodB, the cylinder was a rectangle. Who was wrong?
Well, nobody. Based on the state of knowledge (1), repréisgithe cylinder as a circle is the best one can do. Any
other representation of the cylinder would have been madmprstified assumptions (the same applies to view (2)).
Unless we have another state of knowledge (view (3’)), the trature of the object will not be found.

Our channel modelling will not pretend to seek reality bulyaio represent view (1') or view (2') in the most
accurate way (i.e if view (1') is available then our approatiould lead into representing the cylinder as a circle
and not as a triangle for example). If the model fails to compith measurements, we will not put into doubt the
model but conclude that the information we had at hand taetba model was insufficient. We will take into account
the failure as a new source of information and refine/changejaestion in order to derive a new model based on
the principle of maximum entropy which complies with the mig@ments. This procedure will be routinely applied
until the right question (and therefore the right answefisid. When performing scientific inference, every questio
asked, whether right or wrong, is important. Mistakes ageds welcomed as they lead the path to better understand

9 Note that in Bayesian inference, all probabilities are émaal on some hypothesis space (which is assumed to b true
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the propagation environment. Note that the approach déwisee is not new and has already been used by Jaynes [20]
and Jeffrey [26]. We give hereafter a summary of the modgHipproach:

1. Question selectionthe modeler asks a question based on the information al&ila

2. Construct the model the modeler uses the principle of maximum entropy (withabestraints of the question
asked) to construct the modgl;.

3. Test (When complexity is not an issue) The modeler computes tiasteriori probability of the model and ranks
the model.

4. Return to 1.: The outcome of the test is some “new information” eviderw&eep/refine/change the question
asked. Based on this information, the modeler can therefialee a new model selection.

This algorithm is iterated as many times as possible untiebeanking is obtained. However, we have to alert the
reader on one main point: the convergence of the previowsidig is not at all proven. Does this mean that we have
to reject the approach? we should not because our aim ister beiderstand the environment and by successive tests,
we will discard some solutions and keep others.

We provide hereafter a brief historical example to hightiple methodology. In the context of spectrum estimation,
the Schuster periodogram (also referred in the literatsitbediscrete Fourier transform power spectrum) is comynonl
used for the estimation of hidden frequencies in the data.Sthuster periodogram is defined as:

N
F(w) = 1 | syt |2
- N k
k=1

sk is the data of lengtiv to be analyzed. In order to find the hidden frequencies in #te, dhe general procedure is to
maximizeF'(w) with respect tav . But as in our case, one has to understand why/when to useliust®r periodogram

for frequency estimation. The Schuster periodogram arswepecific question based on a specific assumption (see
the work of Bretthorst [17]). In fact, it answers the followsi question: “what is the optimal frequency estimator for
a data set which containssingle stationary sinusoidal frequencyin the presence of Gaussian white noise?” From
the standpoint of Bayesian probability, the discrete Fenifransform power spectrum answers a specific question
about single (and not two or three....) stationary sinuadigquency estimation. Given this state of knowledge, the
periodogram will consider everything in the data that cdiedit to a single sinusoid to be noise and will therefore, if
other frequencies are present, misestimate them. Howethes,periodogram does not succeed in estimating multiple
frequencies, the periodogram is not to blame but only thestipre asked! One has to devise a new model (a model
maybe based on a two stationary sinusoidal frequencie&®.riew model selection will lead to a new frequency
estimator in order to take into account the structure of whest considered to be noise. This routine is repeated and
each time, the models can be ranked to determine the righbeuaf frequencies.

1.2.2 Information and Complexity

In the introduction, we have recalled the work of Shore ef2dl} which shows that maximizing entropy leads to con-
sistent solutions. However, incorporating informatiorihie entropy criteria which is not given in terms of expected
values is not an easy task. In particular, how does one incatp information on the fact that the room has four walls
and two chairs? In this case, we will not maximize entropyeldasnly on the information we have (expected values
and number of chairs and walls): we will maximize entropydabasn the expected values and a structured form of the
channel matrix (which is more than the information we hanesithe chairs and walls are not constraint equations in
the entropy criteria). This ad-hoc procedure will be usechbse it is extremely difficult to incorporate knowledge on
physical considerations (number of chairs, type of rognm the entropy criteria. Each time this ad-hoc procedure is
used, we will verify that although we maximize entropy undstructured constraint, we remain consistent. Multiple
iterations of this procedure will refine the structured favhthe channel until the modeler obtains a consistent struc-
tured models that maximizes entropy.

A question the reader could ask is whether we should takettount all the information provided, in other words,
what information is useful? We should of course considetradl available information but there is a compromise
to be made in terms of model complexity. Each informationeatdill not have the same effect on the channel
model and might as well more complicate the model for nothiatger than bring useful insight on the behavior
of the propagation environment. To assume further infoionéby putting some additional structure would not lead
to incorrect predictions: however, if the predictions &eleid with or without the details are equivalent, then this



6 M. Debbah

means that the details may exist but are irrelevant for therstanding of our mod€l As a typical example, when
conducting iterative decoding analysis [27], Gaussianetsaf priors are often sufficient to represent our infororati
Inferring on other moments and deriving the true probaéditvill only complicate the results and not yield a better
understanding.

1.3 Gaussian i.i.d Channel Model

1.3.1 Finite Energy Case

In this section, we give a precise justification on why and mvie Gaussian i.i.d model should be used. We recall the

general model:
Yy =4/ ﬁHx +n
Ty

Imagine now that the modeler is in a situation where it has pasarements and no knowledge where the trans-
mission took place. The only thing the modeler knows is that¢hannel carries some enerfjy in other words,

T (Z Z?;l | hij; |2) = E. Knowing only this information, the modeler is faced witte tfollowing question:

what is the consistent model one can make knowing only theggré (but not the correlation even though it may
exist) ? In other words, based on the fact that:

/dHZ Z | hij |> P(H) = nn, E (Finite energy (1.4)
i=1 j=1
/dP(H) =1 (P(H) is a probability distributioh (1.5)

What distributionP (H)*! should the modeler assign to the channel? The modeler wikeldd derive the most
general model complying with those constraints, in otherdsdhe one which maximizes our uncertainty while being
certain of the energy. This statement can simply be expddEsae tries to maximize the following expression using
Lagrange multipliers with respect fe:

L(P) = f/dHP( )logP(H +7§:Z /dH | hij |? P(H)]

1=1 j=1
+08 [1 — /dHP(H)]
If we derive L(P) with respect taP, we get:
dL(P s
% = —1—logP(H vZZ | hij | =5 =
i=1 j=1

then this yields:

P(H) = e B+ 20Ty 307 i I +1)
Ny Ng
= e T[] exo-(v [ b 1)
i=15=1

:HHP(hij)

i=1j=1

10 Limiting one’s information is a general procedure that carapplied to many other fields. As a matter of fact, the priecipne
can know less but understand more” seems the only reasowalléo still conduct research considering the huge amount of
papers published each year.

' It is important to note that we are concerned withHL | T) whereT represents the general background knowledge (here the
variance) used to formulate the problem. However, for sicitglsake, P(H | I) will be denotedP (H).
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with

P(hij) = —(vlhiz 1P+ ,:,t}, ).

One of the most important conclusions of the maximum entppciple is that while we have only assumed the
variance, these assumptions imply independent entrieg s$ire joint probability distributior?(H) simplifies into
products ofP(h;;). Therefore, based on the previous state of knowledge, thensaximizer of the entropy is the
i.i.d one. This does not mean that we have supposed indepeadethe model. In the generaliz&dP) expression,
there is no constraint on the independence. Another surgrigsult is that the distribution achieved is GaussiarcéOn
again, gaussianity is not an assumption but a consequertice #ct that the channel has finite energy. The previous
distribution is the least informative probability dendityction that is consistent with the previous state of krexlgle.
When only the variance of the channel paths are known (buthefrequency bandwidth, nor knowledge of how
waves propagate, nor the fact that scatterers exist.n)ttieeonly consistent model one can make is the Gaussian i.i.d
model.

In order to fully deriveP(H), we need to calculate the coefficieritsand . The coefficients are solutions of the
following constraint equations:

/dHiZ | hij |> P =nmn,. B

i=1 j=1

/ dHP(H) =
Solving the previous equations yields the following prabiidistribution:

Ny Nt

P = el -3 Ly

i=1 j=1

Of course, if one has any additional knowledge, then thisrmftion should be integrated in théP) criteria and
would lead to a different result.
As a typical example, suppose that the modeler knows thafréugiency paths have different variances such as
E(| hij |*) = E;;. Using the same methodology, it can be shown that :

Ny Nt

:HHP(hij)

i=1j=1

Ingz 12
“E..

with P(h;;) = #e ii . The principle of maximum entropy still attributes indedent Gaussian entries to the
channel matrix but with different variances.
Suppose now that the modeler knows that the pgthhas a mean equal ©(h,x) = m,, and variancé&(| hy, —

mypr |%) = Epg, all the other paths having different variances (but nghérsaid about the mean). Using as before the
same methodology, we show that:

Ny Nt

H) = [[[] P(h))
i=1j=1
_lngl? gyl
with for all {4, 7, (4, 7) # (p, k)} P(hsj Wé e Fu andP(hpe) = —— —e Fre . Once again, different but

still independent Gaussian dlstrlbutlons are attribugethe MIMO channél matrix.

The previous examples can be extended and applied whenewed@er has some new source of information
terms of expected valueon the propagation environméfitin the general case, i constraints are given on the
expected values of certain functioifig);(H)P(H)dH = «; for i = 1...N, then the principle of maximum entropy
attributes the following distribution [28]:

P(H) = ¢~ (FAFEE, Xigi (H))

where the values of and)\; (for i = 1..V) can be obtained by solving the constraint equations.

12 The case where information is not given in terms of expectdaes is treated afterwards.
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Although these conclusions are widely known in the Bayesanmunity, the author is surprised that many MIMO
channel papers begin with: “let us assume.& n,; matrix with Gaussian i.i.d entries...”. No assumptionsternodel
should be made. Only the state of knowledge should be cletatgd at the beginning of each paper and the conclusion
of the maximum entropy approach can be straightforwarcdylés

As a matter of fact, the Gaussian i.i.d model should not beottin” away but be extensively used whenever our
information on the propagation conditions is scarce (we'tdarow in what environment we are transmitting our
signal i.e the frequency, the bandwidth, WLAN scenario, wadt know what performance measure we targét...)

1.3.2 Finite Energy unknown

We will consider a case similar to the previous section whiggenodeler is in a situation where it has no measurements
and no knowledge where the transmission took place. The levodiges know that the channel carries some enErgy
but is not aware of its value.

In the case where the modeler knows the valug pfve have shown that:

P(H | E) ( rL n¢ p{ 272 - | }

=1 j=1

In general, wher is unknown, the probability distribution is derived acdogito:

P(H) = /P(H, E)dE

= /P(H | E)P(E)dE

and is consistent with the case whétés known i.eP(E) = §(E — Ep):

Ny Nt

PH) = (WEO el ZZ ”' }

1=1 j=1

In the case were the enerdyis unknown, one has to determif& E). E is a positive variance parameter and the
channel can not carry more energy than what is transmitted’(i< Fnax) . This is merely the sole knowledge the
modeler has about on which the modeler has to derive a prior distributfon

In this case, using maximum entropy arguments, one canglB(i):

1

P(E) - Emax

OSESEmax

As a consequence,

P(H):/O maX( oexp{— ZZ s I ——}dE

i=1 j=1

With the change of variables= -, we obtain:

o0
PH) = / urrm 2 T Xt P gy,
EmaXﬂ-nT n¢ 1
Emax

13 “Normality is not an assumption of physical fact at all. leisalid description of our state of information”, Jaynes.

1 1n “The Role of Entropy in Wave Propagation” [29], Francesitiret al. show that the probability laws that describe etenag-
netic magnetic waves are simply maximum entropy distrdngiwith appropriate moment constraints. They suggestritiae
case of dense lattices, where the inter-obstacle hittisigudce is small compared to the distance traveled, thearglevetric is
non-Euclidean whereas in sparse lattices, the relevamiaibetcomes Euclidean as propagation is not constrained dfe axis
directions.

15 Jeffrey [26] already in 1939 proposed a way to handle thiseidsased on invariance properties and consistency axioms. H
suggested that a proper way to express incomplete ignordraceontinuous variable known to be positive is to assigffioum
prior probability to its logarithm, in other word$?(E) o . However, the distribution is improper and one can not tioeee
marginalize with this distribution.
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Note that the distribution is invariant by unitary transfations, is not Gaussian and moreover the entries are not
independent when the modeler has no knowledge on the ambemérgy carried by the channel. This pointis critical
and shows the effect of the lack of information on the exaetgyt®.

In the case; = 1 andn,. = 2, we obtain:

1 X2 hal?
P(H) = 5 e Emax
EmaxT"2 21:1 | hi1 |2

1.3.3 Correlation matrix unknown

Suppose now that the modeler knows that correlation exetisden the entries of the channel mafixbut is not
aware of the value of the correlation mat@x= E(vec(H)vec(H)!). What consistent distribution should the modeler
attribute to the channel based only on that knowledge?

To answer this question, suppose that the correlation m@ri= VAV is known (V = [vy,...v,,, ] is @

nyne X npyng unitary matrix wheread is an,n: x n,n; diagonal matrixA = diag(A1, ..., An.n, ) With A; > 0 for
1 <i < npny).
Using the maximum entropy principle, one can easily show tha
Ry leve H)
PH|V,A) = H"’"f exp{z [viTveqH) |7 0( ) I* SR B L A

The channel distribution can be obtained:

P(H) = /P(H,V,A)dVdA
= /P(H | V,A)P(V,A)dVdA

If the correlation matrix is perfectly known, théi(V, A) = §(V — VO)§(A — A°) and

MNyrMNt 01 VeqH) |

1
P(H) = tprom o exp{z }

In the case were the correlation mattxis unknown, one has to determi@V, A) = P(A | V)P(V). This
is the problem of constructing an ignorance prior corresjpumnto ignorance of both scale (up to some constraints
proper to our problem) and rotation. The a priori distribatcan be derived as well as the joint probability distribnti
using tools from statistical physics. Due to limited spdbe,result is not provided but can be found in the recent work
of the author [30].

1.4 Knowledge of the directions of arrival, departure, dely, bandwidth, power: frequency
selective channel model with time variance

1.4.1 Knowledge of the directions of arrival or departure

The modeleY’ is interested in modelling the channel over time scales a#ech the locations of scatterers do not
not change significantly relative to the transmitter or nee This is equivalent to considering time scales overolvhi
the channel statistics do not change significantly. Howeber channel realizations do vary over such time scales.

16 1n general, closed form solutions of the distributions dbexist. In this case, a powerful tool for approximate Bagasnference
that uses Markov Chain Monte Carlo to compute marginal postdistributions of interest can be used through WinBUGS
(http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.)

17 We treat in this section thoroughly the directions of afriv@del and show how the directions of departure model carabitye
obtained from the latter case.
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Imagine that the modeler is in a situation where it knows thergy carried by the channel (nothing is known about
the mean)®. Moreover, the modeller knows from electromagnetic thelay when a wave propagates from a scatterer
to the receiving antennas, the signal can be written in anreptial form

s(t,d) = sq /(K" d=27f1) (1.6)

which is the plane wave solution of the Maxwell equations@efon-dispersive space for wave vedtar R2*! and
location vectoid € 2!, The reader must note that other solutions to the Maxwelhogos exist and therefore the
modeler is making an important restriction. The directibthe vectorsy gives us knowledge on the polarization of
the wave while the direction of the wave vectogives us knowledge on the direction of propagation. The @lods
the signal results ip = k™ d. The modeler considers for simplicity sake that the soatsesind the antennas lie in the
same plane. The modeler makes use of the knowledge thaetrénst vector is known up to a multiplicative complex
constant that is the same for all antennas.

Although correlation might exist between the scatterdrs,modeler is not aware of such a thing. Based on this
state of knowledge, the modeler wants to derive a model wiiaikbs into account all the previous constraints while
leaving as many degrees of freedom as possible to the otremnpters (since the modeler does not want to introduce
unjustified information). In other words, based on the faat:t

eJP11 . edP1sy

®S7- X1t

€j¢n7~,1 .. ej¢n7-,s7-

what distribution should the modeler attribute@, .,,,? H is equal to%{)@, ¢i,; = kor; ; andr; ; is the
distance between the receiving anterirend receiving scattergrand ®is an, x s, matrix (s, is the number of
scatterers) which represents the directions of arrivahfrandomly positioned scatterers to the receiving antennas
O, xn, IS ans, x n, matrix which represents the scattering environment batvtlee transmitting antennas and the

scatterers (see Figure 1.3).

The consistency argument (see Proposition 1) states tlia¢ iDoA (Directions of Arrival) are unknown then
H = %‘I’nrxxsw@&-xm should be assigned an i.i.d Gaussian distribution sincentb@eler is in the same state of
knowledge as before where it only knew the variance.

Based on the previous remarks, let us now derive the disimibof ©,_,,,,. The probability distributior?(H) is
given by:

P(H) = /P({)@ | ®,5,)P(® | s,)P(s,)ds,d®

e When® ands, are known, the®(® | s,.) = §(® — ®") andP(s,) = J(s, —s,0). ThereforeP(H) = P(®°0).
e When® ands, are unknown: the probability distribution of the frequepeghh;; is:

In the case whe?(® | s,) andP(s,) are unknown, the consistency argument states that:

— The®,, «,, matrix is such as eadh; is zero mean Gaussian.

— The®;, «,, matrix is such a&(h;;jhm.") = dimd;, (sinceh,; is Gaussian, decorrelation is equivalent to
independence).

In this case, the following result holds:

Proposition 1. ©;_,, i.i.d. zero mean Gaussian with unit variance is solutionhgf tonsistency argument and
maximizes entropy.

Proof: Since® is unknown, the principle of maximum entropy attributessapdndent uniformly distributed angles

to each entry,;:
1
P(¢ij) = 57 L0,2n-

'8 The case where the paths have different non-zero means ¢eraked the same way.
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Let us show tha®;, ., i.i.d zero mean with variance 1 is solution of the consisyeargument.

12
Sinceh;; = %ZZL Or;ei% then P(hy; | ®,s,) = N(0, 2357, | e/%* [2=1) = —e"—2 and
thereforeh;; is zero mean Gaussian since:

P(hij) =

—

Ihijl2

3 P(® | s)P(s,)d®ds,

P (hij | ®,5,) P(® | 5,)P(s,)d®ds,
1
e
V2T

1 lhijl?

= e 2 /P(@ | ;)P (s,)d®ds,

o
3

Ihij1?

= e 2

3

Moreover, we have:

1 & I R ,
E(h;;h* —E = 0,.. eI Pix gF o= IPmi
( J mn) 9,‘1’(\/5; kj€ \/5; n€ )
Sr Sr

1 o
= — > Ee(0k;b;,)Ea(c/*#70m)
Sr—1 =1

Sr Sr

1 . )
= - Z Z 5kl5an<i> (e]¢ik —J¢mz)

" k=11=1
1 & T
= §in— E JPik—JPmk
g, Z a(e )
k=1
= 5jn6im
which proves thaH is i.i.d Gaussian for unknown angles.

One interesting point of the maximum entropy approach iswiéde we have not assumed uncorrelated scattering,
the above methodology will automatically assign a moddhwitcorrelated scatterers in order to have as many degrees
of freedom as possible. But this does not mean that comel&inot taken into account. The model in fact leaves free
degrees for correlation to exist or not. The maximum entrapgroach is appealing in the sense that if correlated
scattering is given as a prior knowledge, then it can be imately integrated in the channel modelling approach (as
a constraint on the covariance matrix for example). Note #iat in this model, the entries & are correlated for
general DoA's.

q)anSr @5r><nt

Fig. 1.3.Directions of arrival based model.

Suppose now that the modeler assumes that the differemingfe@ctors have different amplitudgsP;”. What
distribution should the modeler attribute to the ma#ix ., in the following representation:
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eJbi1 . edPisy Pf 0
1 .
H = Lo 0 o 0 |Osxn?

\/_T €J¢nr,1 . €J¢nr,sr 0 \/P_:T

Proposition 2. ©;, «,, i.i.d Gaussian with variance 1 is solution of the consisjeagument and maximizes entropy

Proof: We will not go into the details as the proof is a particularecabthe proof of Proposition 3.

1.4.2 Knowledge of the Directions of Arrival and Departure

The modeler is now interested in deriving a consistent dodivectional model i.e taking into account simultaneously
the directions of arrival and the directions of departuttege Motivation of such an approach lies in the fact that when
a single bounce on a scatterer occurs, the direction ofsduaivd departure are deterministically related by Dessarte
laws and therefore the distribution of the channel matrigatels on the joint DoA-DoD spectrum. The modeler
assumes as a state of knowledge the directions of departumetifie transmitting antennas to the set of transmitting
scatterers](...s;). The modeler also assumes as a state of knowledge theiairgof arrival from the set of receiving
scatterers](...s,.) to the receiving antennas. The modeler also has some kdgw/khat the steering directions have
different powers. However, the modeler has no knowledgeltaitvinappens in between. The skt.s;) and (...s,.)
may be equal,i(..s;) may be included inl(...s,.) or there may be no relation between the two. The modelekalewa's
that the channel carries some energy. Based on this stateofédge, what is the consistent model the modeler can
make ofH

eJP11 . iP1sy Pf 0
1 .
H = 0 0
\/SrSt

Jbnra gibnre :

e ... € : 0 \/[)_;
VPO i1 pding
O, xs, 0 . 0 ?
0 \/P_;ft ejwst,l . ej'l/)st,nt

In other words, how to modeéd,_,,? As previously stated, the modeler must comply with theofeihg con-
straints:

e The channel has a certain energy.

1
e Consistency argument: If the DoD and DoA are unknown t%%@mmTPr%@sMstPtZ\Ilstxm should be
assigned an i.i.d zero mean Gaussian distribution.

chrXSr OSrXSt LIJSXW

Fig. 1.4.Double directional based model.

Let us now determine the distribution &X;_ ,,. The probability distribution of?(H) is given by:
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1 1
P(H) = /P(<I>P”5®Pt2lll | ®, %, P", P s,,5)

P(‘Ilv(I) | Srast)P(Prvpt | Stasr)
P(s¢, 8)dsds;dP*dP*d ¥ d®

When¥, @, s,., s, PT, Pt are known:P(®W | s,., s;) = §(® — ®°)5(¥ — W), P(s4,5,) = d(s, — 8%.)5(s; —
s9),P(P*, Pt | s,,5,) = §(PT — PO)§(Pt — P°") and

1 1
P(H) = P(®°P°"?@P°"° ¥")

Suppose now tha¥, ®, s,., s, are unknown, then each enthy; of H must have an i.i.d zero mean Gaussian
distribution. In this case, the following result holds:

Proposition 3. ©;, «, i.i.d zero mean Gaussian with variandeis solution of the consistency argument and
maximizes entropy.

Proof: Let us show tha®,, .., i.i.d zero mean Gaussian with variantds solution of the consistency ar-
gument and maximizes entropy. Sindeand ¥ are unknown, the principle of maximum entropy attributes
i.i.d uniform distributed angles oveXr to the entriesp;; andq;;. In this case, if one choosés ;, to be i.i.d

zero mean Gaussian with varianteand knowing thath;; = —== 3730, Y00 OV P’/ Byl el ki eltn,

. . Ihij1? .
then: P (h;; | ®,®,s,,s:) = N(0, sf,lsr Z;’;l S| VP, €%/ Pplelvei 2= 1) = \/%e* 5 (since

1 Sr t__ 1 s t __ H H
2 b =1 andg przl P," =1 (due to power normalization as we assume the energy known).

Therefore

1 Ihi 12
p(hij):/ﬂ_e——z P(®, W | 55, 5,)P(P". Pt | s,,5,)P(s1, 5,)d®d¥
s
dP*dP%ds,ds,
1 7“%1\2
= e 2

Ver

1 _\’Lij\z
= e 2

/P(<I>, U | s, 5.)P(P*, P | 54,5,)P(st, 5,)d®dVdPT dP*ds,ds,

Moreover, we have :

St Sp St Sp

. 1 . it it b i
Es w.o(hijhl,,) = EZZZZEe(GMGl”EW(e GWrntiki \E g (e~ Imitidin)

k=1p=1r=1 (=1

NN e

1 St Sr St Sr

= — S TSNS G By (eIt B (e I¢mi %
tor

k=1p=1r=11=1

/Pkt /P'r‘t /Pp’r‘ /F)l’!‘

1 st Sp

= Z ZEw(e*j’ébknJr]'wk,j)E¢(e*j¢mp+j¢ip)PkthT

5t
Eor =1 p=1

St Sp

1
- 5im5jng S R'RT

" k=1 p=1

= 5zm 5jn

which proves tha®; ., is solution of the consistency argument. Once again, idstéasaying that this model
represents a rich scattering environment, it should be roomnect to say that the model makes allowance for every
case that could be present to happen since we have imposesioaints besides the energy.



14 M. Debbah
1.4.3 Considering more features

The modeler wants to derive a consistent model taking intmauat the direction of arrivals and respective power
profile, directions of departure and respective power mofielay, Doppler effect. As a starting point, the modeler
assumes that the position of the transmitter and receivenggs in time. However, the scattering environment (the
buildings, trees,...) does not change and stays in the sasigon during the transmission. Let andv, be respec-
tively the vector speed of the transmitter and the receivtr respect to a terrestrial reference (see Figure 1.5). Let
s?fj be the signal between the transmitting antehaad the first scattergr Assuming that the signal can be written in
an exponential form (plane wave solution of the Maxwell égures) then:

(Kt .
st (t) = sped ii (vettdu)F2mfet)

t
fcuL'j"t
c

= sgei2n( tfet) givis

Here, f. is the carrier frequencyl,;; is the initial vector distance between antenaad scatteref (v;; = kﬁj.dij
is the scalar product between veckdy and vectorl;;), k!, is such ak!;, = Zu!, = ZZeut . The quantity- k!, v¢
represents the Doppler effect.

In the same vein, if we defing; (¢) as the signal between the receiving antejiaad the scatterey then:

fev

S:J (t) = soej(%r( c u t+fct))ej¢ij

In all the following, the modeler supposes as a state of kedgé the following parameters:
speedv,.
speedvy.

the angle of departure from the transmitting antenna to¢htteyers);; and poweer.
the angle of arrival from the scatterers to the receiving@ands;; and powerr;.

The modeler has however no knowledge of what happens in bataecept the fact that a signal going from a steering
vector of departurg to a steering vector of arrivalhas a certain delay,; due to possible single bounce or multiple
bounces on different objects. The modeler also knows thattddo not move between the two sets of scatterers. The
s X s delay matrix linking each DoA and DoD has the following strure:

e—jQﬂ'le,l e—JQT"le,st
DSTXSt(f) =

e*jzﬂf"'wwl o efj27rf’rs,,,,st

The modeler also supposes as a given state of knowledgedhthé each patlh,;; of matrix H has a certain
power. Based on this state of knowledge, the modeler wamsoiel thes, x s, matrix @, _, in the following
representation:

B CIREE T E S B OIS PR B VP[0

1
H(f,t) = o0
\/5rS : T opar
R TP RIS L (o +2m LV ) : ‘
ei(dra L) ed (e : L0 /P
esrxs,, @Ds,«xst (f)
ut v fufn,v
VPO ej(’¢1,1+277—f L=t ) (i, 2m — 2t “t)
0o . 0 :
7 . Ful ave . Ful vt
0 P eI W11 2r—=——1)  oi(Woy,n, +2m——1)

(© represents the Hadamard product defined;as= a;;b;; for a product matrixC = A () B. As previously
stated, one has to comply with the following constraints:

e Each entry oH(f, ¢) has a certain energy.
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Vi

-

(0] T

Fig. 1.5.Moving antennas.

e Consistency argument: if the DoA, DoD, powers, the delays,Doppler effects are unknown then matki
should be assigned an i.i.d Gaussian distribution.

Proposition 4. ©, ., i.i.d zero mean Gaussian with variance 1 is solution of thesgsiency argument and maxi-
mizes entropy?

Proof: We will not go into the details but only provide the guidebnaf the proof. First, remark that # and ¥
are unknown, then the principle of maximum entropy atteisuti.d uniform distribution to the angles; and;;. But
what probability distribution should the modeler attrioad the delays and the Doppler effects when no information
is available?

e Delays The modeler knows that there is, due to measurements petbin the area, a maximum possible delay
for the information to go from the transmitter to the receiwgax. The principle of maximum entropy attributes
therefore a uniform distribution to all the delays such asP(7;;) = ﬁ with 7;; € [0, Tmax]

e Doppler effect The modeler knows that the speed of the transmitter andvezagan not exceed a certain limit
uvimit (in the least favorable casejni; would be equal to the speed of light) but if the transmissiooues in
a city, the usual car speed limit can be taken as an upper bdartis case, the spead andwv, have also
a uniform distribution such a®(v;) = P(v,) = %mt Moreover, ifv; = wv;cos(at)r + vesin(ag)y, v, =
vy cos(a )2 + vy sin(ay)g, uti; = cos(8°,;)2 4 sin(6';;)g andu®;; = cos(8";;)2 + sin(5" )3, the modeler will
attribute a uniform distribution oveXr to the anglesy, ar,ﬁtij andg’;;.

With all these probability distributions derived and usthg same methodology as in the narrowband (in terms of
frequency selectivity) MIMO model proof, one can easilywhbat®;, ., i.i.d Gaussian is solution of the consis-
tency argument and maximizes entropy.

Note that in the cas¢ = 0, v¢ = 0 andv, = 0, the same model as the narrowband model is obtained. If
more information is available on correlation or differeatriances of frequency paths, then this information can be
incorporated in the matriD;, _«s,, also known as the channel pattern mask [31]. Note that ircéise of a ULA
(Uniform Linear Array) geometry and in the Fourier directso we havex;; = u] (any column of matrixp has a
given direction) andlﬁj = u! (any line of matrix® has a given direction). Therefore, the channel model sfieplio:

19 Why does normality always appear in our models? Well, thevanss quite simple. In all this paper, we have always limited
ourselves to the second moment of the channel. If more manaeatavailable, then normal distributions would not apjrear
general.
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= (_)57'><5t @Dsrxst(fat)
\/SrSt jQﬂ_d(nT—l))\sin((zbl)

. o dnr =D sin(0sy)

e]
o d(ntq;sm(m)

1...¢

. _d(ng—1)sin(ehsy)
1., e2n—t—s—x

In this case, the pattern makk;, s, has the following form:

. . 't s t . - Jte r t
/Pf /Pfe_]gwfﬁ’leJQW%(uivT‘Hllvt) o /Pf /Pstte_]gwfﬁvst 6‘727T = (ulvT+uStvt)

D37~><St(f7t): : . :
P! Pl,ge—jQ'/r‘fTSTylejQW%(ugrvr-kuivt) o P! Pgte_‘jQWfT‘S7"‘sf ej27r%(ugv7v+u§t Vi)
VsV VL s/

Although we take into account many parameters, the final tisdpiite simple. It is the product of three matrices:
Matrices® and ¥ taking into account the directions of arrival and departoratrix @, s, (O Ds,.xs, Which is an
independent Gaussian matrix with different variances.fiéguency selectivity of the channel is therefore takea int

account in the phase of each entry of the ma®ix «;, O D, xs, (f,1).
Remark: In the case of a one antenna system link € 1 andn; = 1), we obtain:

NAZ
1 ful'v full vy .
H(f,t):—[eﬂmmw%t) ej<¢s,,.+2w%t)] 0o . 0
0 \/Pr.
t . fulvy
Pto ... oI (1+2m 1=
637-><31, @Ds,«xst(f) 0 0 :
N fui, v
0 P}, o (s +2m =2 1)
1 ful vy ful vy
= sp J(bp+2m—EZ1t) —jonfr, s j(pt2m —L21) —j2mfry .
V55t [Zkzlek,m/Pge“ R e =I2m TR kzlek,sR./P,ge]( pH2m == 1) =327 f T 5y
utv
VPE O ... oI (1 +2m T )
0 . 0 :
futq v
0 /P oI (s, +2m T 1)
St Sr
— pk’lej%&k,ﬂe*ﬂﬂfﬂc,z
=1 k=1

wherepy; (pr,; = \/%_Stek,l, /P,;\/Pfej(‘b”w”) are independent Gaussian variable with zero mean andchearia
E(| pry |?) = =2 PP, &y = f(u;vr — ulvy) are the doppler effect angl ; are the delays. This previous result is

S St c

a generalization of the SISO (Single Input Single Outputklegiss model in the case of multifold scattering with the
power profile taken into account.

1.5 Discussion

1.5.1 Mdller's Model

In a paper “A Random Matrix Model of Communication via Antansrrays” [32], Miller develops a channel model
based on the product of two random matrices:

H=®A0

where® and® are two random matrices with zero mean unit variance i.itdesiandA is a diagonal matrix (repre-
senting the attenuations). This model is intended to reptebe fact that each signal bounces off a scattering object
exactly once® represents the steering directions from the scattereheteeteiving antennas whit@ represents the
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steering directions from the transmitting antennas to tattsrers. Measurements in [32] confirmed the model quite
accurately. Should we conclude that signals in day to dayblifunce only once on the scattering objects?

With the maximum entropy approach developed in this coatidln, new insights can be given on this model and
explanations can be provided on why Muller's model worksv&dl. In the maximum entropy framework, Muller’s
model can be seen as either:

e a DoA based model with random directions i.e mat#ixwith different powers (represented by mate) for
each angle of arrival. In fact, the signal can bounce freelesl times from the transmitting antennas to the final
scatterers (matri®). Contrary to past belief, this model takes into accounttirfald scattering and answers the
following question from a maximum entropy standpoint: wisdhe consistent model when the state of knowledge
is limited to:

— Random directions scattering at the receiving side.
— Each steering vector at the receiving side has a certaiepow
— Each frequency path has a given variance.

e a corresponding DoD based model with random directions a&im® with different powers (represented by
matrix A) for each angle of departure. The model permits also in g the signal to bounce several times from
the scatterers to the receiving antennas. From a maximuropgnstandpoint, the model answers the following
question: what is the consistent model when the state of latdme is limited to:

— Random directions scattering at the transmitting side.
— Each steering vector at the transmitting side has a cqrtairr.
— Each frequency has zero mean and a certain variance.

e DoA-DoD based model with random directions where the foltmyquestion is answered: What is the consistent

model when the state of knowledge is limited to:

— Random directions scattering at the receiving side.

— Random directions scattering at the transmitting side.

— Each angle of arrival is linked to one angle of departure.

As one can see, Muller's model is broad enough to includerséwnaximum entropy directional models and this
fact explains why the model complies so accurately with tleasarements performed in [33]

1.5.2 Sayeed’'s Model

In a paper “Deconstructing Multi-antenna Fading Channf84], Sayeed proposes a virtual representation of the
channel. The model is the following:
H=A,SA,"

MatricesA,,, andA,,, are discrete Fourier matrices afds an,. x n, matrix which represents the contribution of each
of the fixed DoA's and DoD’s. The representation is virtuatie sense that it does not represent the real directions but
only the contribution of the channel to those fixed directiohhe model is somewhat a projection of the real steering
directions onto a Fourier basis. Sayeed’s model is quiteapm in terms of simplicity and analysis (it corresporals t
the Maxent model on Fourier directions). In this case, al@can revisit Sayeed’s model in light of our framework.
We can show that every time, Sayeed’s model answers a spge#gtion based on a given assumption.

e Suppose matri$ has i.i.d zero mean Gaussian entries then Sayeed’s modetenthe following question: what
is the consistent model for a ULA when the modeler knows thatchannel carries some energy, the DoA and
DoD are on Fourier directions but one does not know what hapjpebetween.

e Suppose now that matrB has a certain correlation structure then Sayeed’s modeleasshe following question:
what is the consistent model for a ULA when the modeler kndwas the channel carries some energy, the DoA
and DoD are on Fourier directions but assumes that the patietiveen have a certain correlation.

As one can see, Sayeed’s model has a simple interpretatithie imaximum entropy framework: it considers a
ULA geometry with Fourier directions each time. Althougimiay seem strange that Sayeed limits himself to Fourier
directions, we do have an explanation for this fact. In hisgrgd31], Sayeed was mostly interested in the capacity
scaling of MIMO channels and not the joint distribution oételements. From that perspective, only the statistics of
the uncorrelated scatterers is of interest since they aeiles which scale the mutual information. The correlated
scatterers have very small effect on the information. Is teispect, we must admit that Sayeed’s intuition is quite
impressive. However, the entropy framework is not limitedite ULA case (for which the Fourier vector approach
is valid) and can be used for any kind of antenna and field aqipiattion. One of the great features of the maximum
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entropy (which is not immediate in Sayeed’s representaipproach is the quite simplicity for translating any addi-

tional physical information into probability assignmenthe model. A one to one mapping between information and
model representation is possible. With the maximum entegpyoach, every new information on the environment can
be straightforwardly incorporated and the models are stersi: adding or retrieving information takes us one step
forward or back but always in a consistent way. The modelsamgewhat like Russian dolls, imbricated one into the
other.

1.5.3 The “Kronecker” model

In a paper “Capacity Scaling in MIMO Wireless Systems Underré€ated fading”, Chuah et al. study the following
Kronecker’® model: ) )
H=R, 20OR,,®

Here,® is ann, x n; i.i.d zero mean Gaussian matrR,n,,,% is ann,. x n, receiving correlation matrix whiIRnt%

is an; x n; transmitting correlation matrix. The correlation is suppd to decrease sufficiently fast so tRgt, and

R, have a Toeplitz band structure. Using a software tool (Ws®ISystem Engineering [37]), they demonstrate the
validity of the model. Quite remarkably, although desigteethke into account receiving and transmitting corretatio
the model developed in the paper falls within the doubledtioaal framework. Indeed, sind,,,. andR.,,, are band
Toeplitz then these matrices are asymptotically diagaedlin a Fourier basis

H
Rnr ~ FILTA7L7-Fn7,

and
Rnt ~ Fnt/l FH

nt+ nyg

F,. andF,, are Fourier matrices whild,, andA,, represent the eigenvalue matriceqof andR.,,, .
Therefore, matri¥I can be rewritten as:

H = Rnr % ®R7L{, %
= In, (Anr,éFny-H@Fm Ap, %) FmH

= F’m- (61 @ Dnrxnt) an,H

®, = F,M‘H@Fm is an, x n; zero mean i.i.d Gaussian matrix abg,, «,,, is a pattern mask matrix defined by:

Ds><sl =
1 1 1 1
)\1271,“ )\’?Lmnr LI )\’?Lhnt )\'rQLT,nT

Note that this connection with the double directional mdueet already been reported in [31]. Here again, the
previous model can be reinterpreted in light of the maximumnogpy approach. The model answers the following
question: what is the consistent model one can make whendhAealle uncorrelated and have respective polwer
the DoD are uncorrelated and have respective powgy, each path has zero mean and a certain variance. The model
therefore confirms the double directional assumption a$ ageBayeed’s approach and is a particular case of the
maximum entropy approach. The comments and limitationsenoedSayeed’s model are also valid heeference

also [38, 39]

1.5.4 The “Keyhole” Model

In [40], Gesbert et al. show that low correlatfdiis not a guarantee of high capacity: cases where the chanraeik
deficient can appear while having uncorrelated entriesgfample when a screen with a small keyhole is placed in
between the transmitting and receiving antennas). In f2} propose the following model for a rank one channel:

20 The model is called a Kronecker model becaligeeq H)?veq(H)) = R.., @ R.., is a Kronecker product. The justification
of this approach relies on the fact that only immediate surdings of the antenna array impose the correlation betagey
elements and have no impact on correlations observed betthheeclements of the array at the other end of the link. Some
discussions can be found in [35, 36].

21 “keyhole” channels are MIMO channels with uncorrelatedtigpéading at the transmitter and the receiver but have aged
channel rank (also known as uncorrelated low rank modelgy Tvere shown to arise in roof-edge diffraction scenadds.|
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1 1
H= RnT 2 grgtHRm 2 (18)
Here,Rnﬁ is ann,. x n, receiving correlation matrix WhiIRm% is an; x n; transmitting correlation matrix.

g, andg; are two independent transmit and receiving Rayleigh fadéajors. Here again, this model has connections
with the previous maximum entropy model:

1
H= —@nrxs,,.@s,,.xst ‘I’st X1 (19)

SrSt
The Keyhole model can be either:

. . . 1 . 1
e A double direction model wits,, = 1 and®,, «; = R,,, 2g,. In this caseg;'R,,,Z = @, ¥, xn, Where
®; ., iS zero mean i.i.d Gaussian.

. . . 1 . 1
e A double direction model with; = 1 and¥,,,,, = g:”'R,,, 2. In this caseR,,, 2g, = D, xs, O, x1 Where
®; 1 is zero mean i.i.d Gaussian.

As one can observe, the maximum entropy model can take ictmat rank deficient channels.

1.5.5 Conclusion

After analyzing each of these models, we find that they allvens specific question based on a given state of
knowledge. All these models can be derived within the maximeatropy framework and have a simple interpretation.
Moreover, each time the directional assumption appearshwdtinjectures the correctness of the directional approach

1.6 Testing the Models

In all the previous sections, we have developed several md@dsed on different questions. But what is the right
model, in other words how to choose between the 8§, M1, ..., M} of K models (note that/ specifies only the
type of model and not the parameters of the model)?

1.6.1 Bayesian Viewpoint

When judging the appropriateness of a model, B&mses derives the posterior probability of the model. Bayss
gives the posterior probability for th& model according to?

P(Y | M, 1)

Y is the data (given by measurements), | is the prior inforometULA, far field scattering...). For comparing two
models)M and M, one has to compute the ratio:
P(M, |Y,I)  P(My |I) P(Y | My, )

P(M|Y,I)  P(M|I) P(Y|M,I)

If P(My]Y,I)> P(M |Y,I),then one will conclude that modaf; is better than model/. Let us now try to
understand each term.
The first term, crucially important, is usually forgotten tne channel modelling communitﬁ%. It favors one
model or the other before the observation. As an exampl@aagthat the informatiofi/ = The scatterers are near
the antennas is given. Then if one has to compare the motie{which considers ULA with far field scattering) and
the modell/; (assuming near field scattering ) then one should con%%) > 1.4

22 This chapter is greatly inspired by the work of Jaynes andtBoest who have made the following ideas clear.

%3 \We use here the notations and meanings of Jaynes [20] ameyJg8]: P(M; | Y, I) is the “probability that the modelZ; is
true given that the data Y is equal to the true dasand that the informatioi on which is based the model is true”. Every time, “
(]” means conditional on the truth of the hypothekisn probability theory, all probabilities are conditior@al some hypothesis
space.

** The terml;%}“f)) can be seen as the revenge of the measurement field sciertishe mathematician. It shows that modelling
is both an experimental and theoretical science and thabperience of the field scientist (which attributes the ealaf the
prior probabilities) does matter.
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For understanding the second term, let us analyze and certtpafollowing two specific models: the DoA based
modelM 404 and the double directional mod&lyoupie

1
H(f,t =—qs(® Dt,f)
()= =2 (0O DIt /)
with
e—d2nfriagizndt(uive)  o—j2nfTin, gi2r L (ulvy)
D(t, ) = : . .
e—02mfTop 1 pi2n L (ulvy) =i f T,y g2 L (ulv,)

deals with the DoA model taking into account the delays, Depeffect (we suppose that the transmitting antenna
does not move but only the receiving one) for a ULAH the number of scatterers). Let the informatioon which is
based the model be such that the powers of the steeringidime@re identical and that the transmitting antennas do
not move. We recall thail v, = (cos(8";)i + sin(8",)j) (v, cos(a )i + vy sin(a.)j) = v, cos(B7; — ay)

The set of parameters on which the model is defined is

Pdoa = {(I)v Sr, @, Ur, 67 Oy, 6,}
and the parameters lie in a subspagg,. We recall here the DoA based model for a given frequency:

\/157‘1’ (0@ n(t.n)x(f) +n(r)

The term of interesP(y | Mqoa I) can be derived the following way:

y(t, f) =

P(y | Mioa, I) = /P(y7pdoa| Miyoa, I)dpdoa: /P(y | Ddoas Mdoas I)P(pdoa| Mioa, I>dpdoa

Let us derive each probability distribution separatély | pdaoa Mdoa I) =

1
(27.(_0_2) N12Nr

and

o7 T T (0t f) - B @O Dty f)a(1)  (u(ts f) = B (O @ Dty f)al )

P(pdoa| Md0a7 I) = P((I)v Sr, B, ﬁra Uy, Qi © | Mdoa; I)
= P((I’ | S, Mdoa, I)P(Sr | Moa, ])P(Ur | Moa, ])P(¢ | Mdoa, ])
P(® | Mdoaa ST‘7I)P(a7‘ | Mdoaa I)P(ﬁr | I7 Mdoa)

since all the priors are taken independent in the case offamiative priors. The values of these priors have
already been provided (the proof is given in chapter 1.4n8l) @nly the prior on® ands, remain to be given. We
give these two priors now (and also the prior on the powepalih in the two models introduced for comparison, the
power distribution is not needed):

e If only the mean and variance of each path is available thergusaximum entropy arguments, one can show
that:

P(® | 57‘;Md0a7 ]) - 6_ Zf;l Z;Lél‘ei’jlz

1
( /27-‘-)7“, X Sy
1

e How can we assign a prior probabiliy(s, | Mqoa I) for the unknown number of scatterers? The modeler has no
knowledge if the measurements were taken in a dense area. dieounknown number of scatterers could range
from one (this prior only occurs in model that have a singlerim®) up to a maximum. But what is the maximum
value? There ard& x N; data values and if there wefé x N; scatterers, the data could be at most fit by placing
a scatterer at each data value and adjusting the directiamieéls. Because no additional information is available

e—trace{@@”)
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about the number of scatterefg,x N; may be taken as an upper bound. Using the principle of maxientnopy,
one obtains a uniform distribution for the number of scatteP (s, | Maoa, 1) = ﬁNl
Note that in the general case, if one has precise availafdeniation then one has to take it into account. But
how can the modeler translate the prior on the scatterersodihe fact that the room has three chairs and a lamp
in the corner? This is undoubtedly a difficult task and repnéiag that information in terms of probabilities is
not straightforward. But difficult is not impossible. Thefahat there are several chairs (with respect to the case
where there is no chairs) is a source of information and waldl to attributing in the latter case a peaky prior
shifted around a higher number of scatterers.

e Power. The transmitter is limited in terms of transmit power to @per bound valué, . Therefore the principle
of maximum entropy attributes a uniform distribution to ttilerent amplituded(P,") = P, , P, e [0,Phyd-In
the same vein, the receiver cannot, due to the amplifiersggroa receiving amplitude greater theh,,. In this
case, the principle of maximum entropy attributes a unifdistribution such a$(P;") = PT , Py € [0, Prad

With all the previous priors given, one can therefore coraput

1

1N7

(2mo2)
sh SN S (v 50 - = 2(© O Dty f))e(1) ' (vt fi) - = 2(© O Dt ) =(51))

P(y | Muon 1) = [

e 20
(':P | Sy, Mdoa, I)P(Sr | Mdoa, I)P(Ur | Mioa, [)P(Oér | Mdoa, I)P(ﬁr | Maoa, [)
P(8 | Moo, I)P(© | Maoa, I)d®dOds, dgdv, da, dfi*

which gives:
N><N1 o Vi N N
Py | e S UL e
(Y| oa ) NXN1 — 271'02 N12N I[lJl_[l
oz (y(tj,f» @O0 Dt fi)e(f) (vt i)~ A= B(O O D1, f)2(f:))
1 svnt]' 1n51 15,.
()X () o ()
Tmax Viim 27 2121
d¢11 ---d(bm- Sp den ...dGST,,H dT11 "'dTST’rLt dv,rdoz,.dﬁ"‘l ...dﬁTST (110)

As one can see, the numerical integration is tedious buttitédsonly way to rank the models in an appropriate
manner.

Model Mgouble:
Let us now derive mod&l/youpie

H(f,t) = —2 (0D D(t.f)) ¥
57 St
with
efj27rffrlvlej27r%(u71'v7v) o efj27rf7'1,5t e]'27r%(u71'v7v)
D(t, f) = .
e —j27 fTs,., 16]27rf (u v,) e —j2m fTs,., bf€j27r (us7v7)

deals with the double directional model for which the setarfgmeters is

pdouble: {(1’7 57‘7 ‘I’a St7 ¢a U’!‘a 9 Oé,,-, ﬁr@} = {pdoaa (I’a St}

by adding two new parameteiis ands, and going to the new subspasgg, .. in such a way thalr = F,,, (n, = s;)
represents modél/yos INdeed, in this case, we have:
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. ) ) - o (ng—1)i
S Oremi i i uive) e G1se—I2m 1 2 L (ufvy) g2m R
(@Dt ) Fa, = :
o o . —jomfrs 5 L ]%M
Zfil 0,,i¢77 T Tor i ol x £t L (ulv ) Z?tﬂgn 327 f Ty i g2 (U V)
_ _ . L o (e —1)i
S Oe p2rf(r,i=mi1) St fuie J2mf (11,0 =T1,n4) @27y
= : : O D 1)
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_ S _ jom e — 1)t
Z?tl 0,.ic 327 f (7o i=Tsp,1) ? L 0. e 32 f(Tap i Tsr ) o270y
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Where®; is a matrix with i.i.d Gaussian entries.
We recall here the model for a given frequency:

(1:1) = == (0D DUt 1)) wx(f) + ni()

The same methodology applies and we have:

1
P(y | Maouvle, 1) :/7,\711\,7
(2wo?)

5 T SN (vt ) - =2 (@ O D1y, f) wa () (v(ts £~ A2 (@ O D(t;.£:) ¥a(f1))

e 20

P(® | sy, Mdouble, I)P(sr | Mdouble I)P (¥ | s¢, Mdouble I)P(st | Mdoule 1)
P(vy | Mdouble I)P(ctr | Mdouble I)P(fir | Mdouble, 1) P(8 | Mdoule, 1)
P(® | Maoubie I)d®AWdOds, ds,dpdv, do, dfi”

and

N><N1 N><N1

N Ni

27 Vlim Tmax
P(y | Mdouble I) = N » Nl Z: Z / / / / 27“72 N12N7 HH

i=17j=1
e—ﬁ(y(tj,fn—ﬁ«b(@OD(tj,fq,»\Ifw(fq,)) (v(ts.f)~ A== (@ O D(t;.1:)) ¥a(f))
1 11 1 L1y,

Sp XSt~ Ny X Sy St XMt -
(Tmax) Vlim (277 (271') 271'(271'
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A common problem in the modelling process is the followingpgose, when testing the models with the data, that
both models\ and M, have the same maximum likelihood, in other words:

(y | pdoa Mdoa; I) (y | pdoublemaxa Mdouble I)

Which model should we choose? Hereafter, we give an examgledw that Bayesian probability will choose the
model with the smallest number of parameters.

First of all, we will suppose that the informatidravailable does not give a preference to model before seleéng t
data:P(Mgoubie| 1) = P(Mgoa | I).
As previously shown,

P(y | Mdoa I) = /P(y,pdoal Maoa, I)dpdoa
= / P(y | pdoas Mdoa 1) P (Pdoa | Maoa I)dpdoa
and
P(y, pdouble | Mdouble I)dPdouble (1.12)

P(y | Mdouble I) =

P(y | Pdouble Mdouble I)P(pdouble | Mdouble I)dpdouble (1-13)

Il |
——
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Since

P(pdouble| Migouble I) = P([pdow v, St] | Migouble I)
= P(pdoa| ¥, 5¢, Mdouvle 1) P(®, s¢ | Maoubie 1)

From equation (1.12), we have:

P(y | Mdouble; // y | [pdoa; St] Mdouble I)P(pdoa| W, s¢, Mdouble I)
P(W, s | Maouble I)dpdoad ¥ ds;

In the following, we will suppose that the likelihood furmti P(y | [pdoa ¥, st], Maouvle 1) iS peaky around the
maximum likelihood region and has near zero values elsesviherwise, the measurement data Y would be useless
in the sense that the data does not provide any informatiopp&e now that with modél/yoypie the maximum
likelihood P(y | [pdoa ¥, st] Mdouble I) OCCUrS at a point neab = F, ands; = n, for the parameter® ands; in
other wordsP(y | [pdoa ¥, st], Maouble I) is always null except for the value @& = F; ands; = n, then:

P(y | Mdouble; /// y | [Pdoaa R4 St] Mdouble I)P(pdoa| W, s Mdouble I)
P(¥,s; | Maouble 1)dpdoad ¥ ds;

~ / P(y | [peon ® = Fo,, 5t = ne), Moousie I)

P(pd0a| [‘I’ = Fn,,; St = nt]Mdouble ]) (1-14)
P([‘I’ = Fntvst = nt] | Mdoublea I)dpdoa (1-15)

One has to notice thaP(pgoa | [¥ = Fu,, st = ne], Maouvle I) = P(Pdoa | Mdoa I) @and P(y | [pdoa ¥ =
F.,,s: = nt], Mgouvle I) = P(Y | Pdoas Mdoa I) Since both models are the same when= F,,, ands; = n;. We
also haveP(¥ = F,,,, st = n: | Maounle I) < 1 (In fact, we can derive the exact value. Indeed, since we have
no knowledge of the directions of arrival(® = F,,,, s = n¢ | Maouble I) = W) Using equation (1.14),

Bayesian probability shows us that:

P(y | Mdoubla I) < /P(y | [Pdoa ¥ = anst = nt]7 MDoubIe7 I)
P(pdoa| [‘I’ = Fn“ St = nt]Mdoubla [)P([‘I’ = Fn“St = nt] | Mdoubles I)dpdoa

= /P(y | Pdoay Mdoa, I)P(pdoa| Mdoa, I)P([‘I’ = Fnt , St = nt] | Mdoubla I)dpdoa
< /P(y | Pdoay Mdoa, I)P(pdoa| Mdoa, I)dpdoa

= / P(y, Pdoa | Mdoa, I)dpdoa
P(y | Maoa, I)

SinceMyoq has less parameters théfy,upie Bayesian probability will favor the modeél/yo, with less parameters
and therefore shows that “the best explanation is alwaysithglest?>. Itis therefore wrong to think that by increasing
the number of parameters one can always find a good modelaoriadeed better fit the data to the model (expression
P(y | pdoa Mdos 1)) but the prior probabilityP (pdoa | Maoa I) Will Spread over a larger space and assign as a
consequence a lower value Rily | Mgoa ).

But how does the a posteriori computation compare with th@lusethodology of maximizing the likelihood
P(y | p, M, I)?

Following [20], let us expantbg P(y | p, M, I) around the maximum likelihood poipt= {p' 1o s P max}

d?log(P) ; o
log P(y | p, M,I) = log P(y | pmax, M, I) + Z dpi dpj = P'mad (P! — P max) + O0)
,5=1

25 In statistical inference, this is known as Occam’s razodlisivh of Occam was a theologian of the 14th century who wrote
against the papacy in a series of treatise in which he triedaa many established pseudo explanations. In his tefradogic
of simplicity was stated in the following form “Causes shadt be multiplied beyond necessity” [28]. Note that Occarazor
has been extended to other fields such as metaphysics wieieté@rpreted as “nature prefers simplicity”.
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then near the peak a good approximation is a multivariates§an such as:

P(y | p. M. 1) = P(y | pmas, M, D)e™ 3 #rrad & (p=mman)
with the inverse covariance matrix defined as:

A1, = (Llos(P)
1] dpi dpj s

P(y | M.1) = P(y | puax M, 1) [ e 40-md3 000w Py | 31, 1y
= P(y | pmaXaMaI)G(M;I)

Therefore,

All the tools are now provided to better understand what gpleaiing. Suppose we want to compare two models
M andM;. The a posteriori probability ratio for modé¥ over M; is:

P(M |y I) PM|I) P(y|MI)

P(My |y,I)  P(My|1)P(y|M,I)
P(M|I P(y|pmax,M,]) G(M,I)
P( |I> (Y|p1max MlaI>G(M17])

In the conventional method3/ is better than\/; if % > 1 which is only one part of the three terms

to be computed. In fact, in order to compare two models, ttegas have to be calculated and the mistake persists
thinking that any model/; versusM is good as long as we increase the number of parametersdirttieditting will
get better and the rati (3"“” ’%’1]) will decrease but this is only looking at one part of the pewbl First of all,
one has to consid (%'f[ and moreovevg((MLfl This last term depends on the prior information about therival
parameters and as the number of parameters increasegthidgereases due to the fact that we add more and more

uninformative priors.

1.6.2 Conventional Methods

In the previous section, we have shown how probability thean be used to rank the models. However, the integrals
derived in equation (1.10) and equation (1.11) are not easpinpute, especially in the case of interest with a high
number of antennass (x 8) since we have to marginalize our integrals across a greabeuof parameters. But
however difficult the problem may be, it is not a reason to lpdeblems and the use of other methods should be
clearly explained. The reader must now know that one can nand#tels and that there is an optimum number of
parameters when representing information. The Bayesémndwork gives us an answer by comparing the a posteriori
probability ratios: M If one is to use other testing methods, then one has to gleaderstand the limitations

of these methods and justlfy the use of the criteria. In tilevdng, we explain two procedures used by the channel
modelling community and explain their limitations.

1- Parameter estimation methods

In this procedure, the data is cut into two parts, one fonesing the parameters, the other to validate the model

incorporating the parameters.

e For estimating the parameters such as the angles of amivalparametric methods such as the beamforming
or the Capon method [43] can be used. In the case of paramettivds such as Music [44], Min-Norm [45] or
Esprit method [46], they rely on properties of the structfrthe covarianc® = E(yy™) = @K ®H + 00?1
of the output signal. In this case, one has to assume thaixniatfK = E(@¥xx? ¥ @)) has full rank.

e Once the parameters of the model have been estimated, thresethof the data is used to test the model. A
mean square error is given. In general, a small mean squardeacknowledged to yield a good model and
one seeks the smallest error possible.

If one is to use this procedure, one has to understand thatway will it lead into judging the appropriateness of

a model. Indeed, by adding more and more parameters to thelpoo@ can always find a way of achieving a low

mean square error by adjusting accordingly the paraméthkis fact explains why some many models comply in

the literature with the measurements. If the model ministhe mean square error, then it is@ssiblecandidate

but the modeler can not conclude that it ig@dcandidate.

Moreover, since the testing method has no real justificatitany problems arise when using it.
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e How does one cut the set of data? Do we use half the data toagsttire parameters and half the data to test
the model? Why not using one quarter and three quarter? Bahesian viewpoint, this is not at all a problem
as one takes into account all the data available and doesal@ amy unjustified transformation on the data.

e Ifoneis to use a Music or Esprit algorith, has to be full rank. This is obviously not the case for a double
directional model where the steering DoD matiixs not always full rank sincK = E(@ ¥xx? #H0H).

2- Moment fitting:

Other authors [47] validate their model by finding the snlkerror of a set of moments. They derive explicit

theoretical formulas of they, momentm,,(f) of the matrix H (f)H(f) and find the optimal parameters in

order to minimize: N
i Tan(f) .
N 2 Gy

n=1

where
() — TracdH (HH())"
" TracgHE (f)H(f))

As previously stated, many models can minimize this catdry adding more and more parameters and one
cannot obviously conclude in this case if a model is betten the other or not. Moreover, how useful is it to have
a channel that fits a certain amount of mometfts?

The previous remarks show that when the abstract of a papertsis“This paper finds the theoretical predic-
tions to accurately match data obtained in a recent measumtetampaign”, one has to be really cautious on the
conclusions to be drawn.

1.7 Conclusion

Where do we stand on channel modellifigPhis question is not simple to answer as many models havegreposed
and each of them validated by measurements. Channel madei®tgetting better and better but they only answer
different questions based on different states of knowl&tigenhe crucial point is not creating a model but asking
the right question based on a given state of knowledge (ramsurement data, prior information, are we in a urban
area? is it a fixed network?..). A generic method for creatmgglels based on the principle of maximum entropy
has been provided and proved to be theoretically sound. Atyestep, we create a model incorporating only our
prior information and not more! The model achieved is brogtt aomplies as best it can with any case having more
constraints (but at least includes the same prior conssjaifhe channel modelling method is summarized hereafter:

o H(p)= [ —plogp + 3, \i{prior information},
e Argument of consistency

The consistency argument is extremely important as it shibasstwo channel modelling methods based on the
same state of knowledge should lead to the same channel niddelfact has not always been fulfilled in the past.
Our models are logical consequence of the use of the princpmaximum entropy and need not to be assumed
without deeper justification. The models proposed may seaaequate to reality for some readers: we argue as in
[20] that the purpose of channel modelling is not to desardadity but only our information about reality. The model
we achieve are consistent and any other representationiisusy unsound if based on the same state of knowledge.
However, one must bear in mind that the less things are asbama priori information the greater are the chances
that the model complies with any mismatched representation

But what if the model fails to comply with measurements? Tioeleh is not to blame as it is a logic consequence
of information theoretic tools [20]. With the methodologyrioduced, failure is greatly appreciated as it is a soufce o
information and the maximum entropy approach is avid ofrimfation: the result of non-compliance is automatically
taken into account as some new information evidence to lsepocated in the question. It only means that the question
asked was not correct (double directional rather than tiineal for example) and should be adjusted accordingly in

26 Note that if all the moments fit, then the criteria is sounchi@ $ense that measures such as mutual information or SINBHwh
are of interest in communications) will behave similarly.

2T This question has to be taken in light of a talk “Where do wadtan maximum entropy?” made by E.T. Jaynes in 1978 at MIT
[48].

28 This point of view is not new and the misconception persistmany other fields. Descartes, already in 1637, warned us whe
stating in the first lines of the French essay “Le discoursadmé&thode™:" la diversité de nos opinions ne vient pas dguz
les uns sont plus raisonnables que les autres, mais setldmer que nous conduisons nos pensées par diverses vaies, e
considérons pas les mémes choses”.
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order to imply a new model (based on some new source of infiwmjaand as it is well known, finding the right
guestion is almost finding the right answer.
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2.1 Introduction

A recurrent necessity in signal processing is that of extigoor restoring information from a corrupted version
thereof. This fundamental requirement is embodied in tioblems of blind equalization and blind source separation
(BSS), on which it can be said that the theory of unsupervégkaptive filtering is based. This theory encompasses
models and tools that are very general in the sense that awaitkty of problems can be fit into their framework:
communications, biomedical, pattern recognition, ecoetoics and image processing, among several others. This fac
in itself is indicative of how important is the research oa tapic.

Interestingly enough, the development of the theory sjgio these most interrelated problems took place along
different lines: while most techniques for blind equaliaatwere conceived in the context of a classical SISO (single
input /single-output) model, BSS evolved basically untieraegis of formulations of a purely spatial character. Two
decades of efforts led these fields of research into a signifidegree of maturity; nevertheless, the possibility of
comparing the development of these branches and takinghay@ of the potential synergy between them, which
could be decisive to enrich and facilitate their developingtil remains to be fully exploited.

Therefore, the objective of this tutorial is twofold: in tfiest part, the idea is to provide an overview of both
problems, setting a basic theoretical foundation that allbw a non-expert audience to understand them; in the
second part, some important recent developments, thealrettnnections and modern trends are analyzed, which
include:

The relationships between blind equalization criteria lagtiveen blind and supervised equalization criteria.

The problem of blind nonlinear equalization based on piéaitieerror filters.

Blind source separation in nonlinear, convolutive and udeiermined contexts.

An investigation of the relationships between blind equaglon and blind source separation.

The use of advanced mathematical tools in the study of s@egaration techniques, such as algebraic methods.
The application of evolutionary optimization techniquestte problems of equalization and source separation.

Finally, it is important to remark that this two-part tutarivas conceived under the auspices of two hopes:

e Thatit be useful to those who are not familiarized with thelpdems of equalization and source separation, which
justifies the inclusion of a first part devoted to their foutialas.

e Thatit be attractive to experts in both areas, which exgltie structure of the second part, in which modern (and
even open) topics are introduced.

The tutorial is organized as follows. Firstly, we exposetasics of the problem of SISO channel equalization.
Afterwards, in Section 2.3, we review some concepts aboutichannel equalization. In Section 2.4, we present
the fundamentals of the blind source separation problere.sgtond part of this document begins in Section 2.5,
in which some novel aspects concerning the problem of exptadn are addressed. In Section 2.6, we provide an
overview about particular models in the BSS problem. A dis@n about some relationships between the problems of
equalization and blind source separation is presenteddtid®e?.7. In Section 2.8, we highlight some modern trends
in the field of unsupervised signal processing.
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2.2 Equalization/Deconvolution: Single-Input / Single-@itput (SISO) Systems

The objective of a communication system is to provide thema@éhereby information may be properly interchanged.
The process as a whole is conceived as having two poles - @ gfdtansmitters and a group of receivers - which are
interconnected by a channel, as shown in Fig. 2.1.

53(n) > Channel %,73(”1)
. :1:3(71)

AN J

Fig. 2.1.MIMO channel withN transmitters and/ received signals.

In Fig. 2.1, there aréV transmitted signals antl/ received signals, a condition that characterizes a makigbut
/ multiple-output (MIMO) system. From this broad notionisitpossible to reach some relevant particular cases [1]:

e SIMO (single-input / multiple-output) systems, whah= 1 andM > 1;
e MISO (multiple-input/ single-output) systems, whah> 1 andM = 1;
e SISO (single-input/ single-output) systems, whén= 1 andM = 1.

Initially, we will be exclusively concerned with systemddmaging to the last class, particularly due to their con-
ceptual simplicity and historical precedence. In sectidi®sand 2.4, systems with multiple inputs and/or multiple
outputs will be studied in more detail.

2.2.1 The channel and its effects

In general, the channel through which the information igriclhanged possesses features that are responsible for
modifying the transmitted signal. These distortions, if pmperly dealt with, may cause the received message to be
reconstructed with an unacceptable degree of imprecision.

In order to illustrate this point, let us assume that the camication channel is modeled as a linear and time-
invariant (LTI) system whose output is added to a stochgsticess that represents the thermal noise in order to form
the received signat(n):

x(n) = Z h(k)s(n — k) 4+ n(n), (2.1)
k=—o0

whereh(n) is the channel impulse response ajid) is the additive noise. If we rearrange the terms of (2.1) deor
to emphasize the presence of the transmitted sigmgf, we will get to:

oo

z(n)=h0)sn)+ Y h(k)s(n—k) +nn). (2.2)

k=—00,k#0

It is noticeable that the received signal is formed by a comatidn of three terms: the message of intergst), the
additive noise, of whose presence we were already aware tarcth
> h(k)s(n—k), (2.3)

k=—00,k#0

which corresponds to a superposition of delayed versiorthetransmitted signal. This term is the mathematical
expression of the so-called intersymbol interference)(Esmajor concern in digital band-limited systems [2, 3].

4 We will treat the non-delayed signain) exclusively for the sake of simplicity, since, as it will knene clearer in the following,
any equalization delay would be acceptable.
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2.2.2 The idea of equalization

The model we have just exposed, which is the SISO channel Imadeill adopt in the course of the entire work,
unveils the existence of two noxious effects that are p@tycapable of degrading communication: ISI and noise.
Now, it is time for us to analyze a classical approach to tledlem of mitigating ther® the use of an equalizer.

An equalizer can be defined as a specially tailored filter wludigective is to process the received signal in order to
generate an output signal as close as possible to the dnigessage. In mathematical terms, the goal of an equalizer
is to obtain

y(n)=as(n—4d), (2.4)

wherey(n) is the equalizer outputy is a constant and is the so-called equalization delay.

Since the equalizer is a filter, and, moreover, it is up to estésk of carrying out its project, there are three
guestions that must be answered: 1) what filtering struetilk®e adopted? 2) What criterion will guide the choice of
its free parameters? 3) How will the optimal solution be fd@in this section, we will give a classical answer to the
first question: the equalizer is assumed to be a linear argitirariant (LTI) filter with finite impulse response (FIR).
The rest of our discussion will be devoted to the remainingstjons.

The Zero-forcing criterion

If we ignore for a moment the existence of additive noise, vilelve faced with a scenario in which channel and
equalizer form a cascade of two LTI systems. Let us assuni¢tbaransfer function of the channeliig(z) and that
the transfer function of equalizer ¥ (z). Under these circumstances,

Y (z) = H(z)W(2)S(z). (2.5)
Applying the z-transform to the ideal condition (2.4), we ge
Y (2) = az"%5(2). (2.6)

By replacing (2.6) into (2.5), we find the equalizer tran$tarction that produces the ideal condition:
2.7)

This transfer function shows that the equalizer must be, ¢eréain sense, the inverse of the channel - a quite
satisfactory resultin intuitive terms. In the time domaire above condition leads ta(n)«h(n) = [0 --- 010 --- 0],
which means that the combined impulse response is forcesstovee a value equal to zero in all instants, exeeptd,
wherefore the solution expressed in (2.7) is referred toeas-forcing (ZF) [1]. The ZF solution is very important
from the analytical standpoint, but, in practice, it suffélom two drawbacks: 1) in the most common scenario - that
in which both channel and equalizer are FIR filters - the smiuis unattainable, and 2) it does not take noise into
account, which may be disastrous in some cases.

The Wiener criterion

The Wiener criterion is arguably the cornerstone of therertptimal filter theory. In the context of equalization,
its goal is identical to that of the ZF criterion: to seek tHeal condition presented in (2.4). However, contrarily to
the ZF approach, the Wiener criterion adopts a perspedtatehias two strong points: 1) it encompasses the idea of
proximity between a given case and the ideal one, and 2) it@ysp statistical measure. These positive aspects allow
the application of the Wiener criterion to a wide range ofistures and, in addition to that, eliminate any restriction
to the presence of randomness or noise.

The Wiener cost function is given by:

Iiener = B |s(n=d) =y (m)°] = B |le )], (2.8)

wheree(n) represents the error between the output signal and theedesisponse. The reader should notice that
Jwiener 1S Simply a measure of the distance between the two membd&4)fin the ideal case in which = 1,

5 Notwithstanding the fact that an equalizer is able to miggwise-related effects, it is more commonly associatéll the task
of reducing ISI. Accordingly, our analysis will focus on tlater sort of distortion.
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which attests the similarity between this approach and thedution. Since the equalizer is assumed to be a FIR
filter, it is straightforward to obtain the optimal paranretector, i.e., the Wiener solution:

w=R"'p, (2.9)

whereR is the correlation matrix of(n), andp is the cross-correlation vector between the received ambnitted
signals. Thus, the optimal parameter vector depends ondtrelation structure of the received signal and on the
correlation between the received signal and the transimttessage (which is essential, since the filter will atteimpt t
“build the desired signal from the received signal”). Ingdiee, this solution is usually searched in an iterativddas
with the help of the LMS (Least Mean Square) or the RLS (Reeeilseast Squares) algorithm [1].

The Wiener approach is a simple and elegant solution to thaleqtion problem. However, it should not be
overlooked that it is a solution founded on an implicit asption: that it is possible to have access, at the receiver,
to samples of the desired signal. This hypothesis, whichagx@why the Wiener criterion belongs to the class of
supervised paradigms, may be a serious problem in a numibealevorld applications. This limitation is thraison
d’étreof the so-called unsupervised or blind techniques, whidhbeithe object of our subsequent discussions.

Blind Equalization via Linear Prediction

Let us analyze the problem we have just raised to find suitalbid equalization criteria. A classical “first solution”
to this problem is to use a linear prediction-error filterhie tole of equalizer. In order to understand this proposal, w
should consider the predictibiask in itself.

The problem of predicting the future of a time series is comipdormulated as that of finding a filter that
minimizes the Wiener-like cost function:

Tereaiction = B || (n+1) =y ()] = B [leprediction ()], (2.10)

wherey(n) = f[z(n), z(n —1), ---, z(n — k)], a function of past samples of the received signal. If therfilg
structure is assumed to be linear, its optimal parameterdeacalculated via the direct application of (2.9). In this
case, the prediction error can be defined as being:

€Prediction = T (TL + 1) -y (TL) . (211)

The prediction-error filter is simply a device whose inpuhis received signal(n) and whose output is the prediction

erroreprediction (TL)
At this point, it is important to highlight two properties pfediction-error filters [4, 1]:

e A prediction-error filter is, at least in the limit of a struce with a sufficient number of parameters, a whitening
filter. In other words, the output of a PEF tends to be an uetated random process.
e A (forward) prediction-error filter is a minimum-phase dewi

The first of these properties is essential from the standjpdinlind equalization. Since, as a rule, the transmitted
signals(n) is considered to be formed by i.i.d. samples, it is temptingrtagine the possibility of using a whitening
filter such as the PEF as an equalizer tuned to invert theraofithe communication channel by eliminating the
correlation it introduces. However, the reader shouldasothat to produce uncorrelated samples is different from
producing independent samples [5]. This essential limitatvhich will play a key role in many parts of this tutorial,
dramatically reduces the scope of application of a blindatiger based on second-order statistics (SOS). The use
of SOS simply is not enough to recover the character of indégece that is inherent to the transmitted signal in a
general scenario. As a matter of fact, PEF are effective mnilie context of minimum-phase channels, which is in
consonance with the second property presented above [4].

Blind Equalization: the Benveniste-Goursat-Rouget and Salvi-Weinstein theorems

Since the use of second-order statistics is not enough wupean unsupervised paradigm that is both sound and
general, it is time for us to look for more solid bases. Thig#y is provided by a pair of results on which the entire
blind equalization theory is founded: the Benveniste-GatsRuget (BGR) and the Shalvi-Weinstein (SW) theorems.
In order to understand these results, let us firstly presenttundamental hypotheses [6, 7]:

5 In this section, we will consider, without loss of genesalthat the term “prediction” refers to forward prediction.
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e The transmitted signal is composed of nhongaussian i.irdp&es;
e The channel and the equalizer are LTI filters, and the additoise is negligible;
e ltis possible to reach a condition of perfect inversion @&F condition).

The first two assumptions are responsible for establishstgrario in which the transmitted samples are independent
and nongaussidrand the channel is conceived as a device that generatesyimieo! interference. The last condition
indicates that the theorems will emphasize the statistispects of blind equalization in an ideal (from the struadtur
standpoint) case.

Having thus set the scene, we are ready to state and diseuBgtiveniste-Goursat-Ruget (BGR) theorem [6]:

Theorem 1 (Benveniste-Goursat-Ruget)Jnder the previously defined conditions, if the probabdignsity functions
of the transmitted signal and of the equalizer output areagtien the ZF solution is necessarily attained.

The most important aspect of the BGR theorem is the persgeittopens of expressing a ZF (i.e. an ideal)
configuration without making use of the channel impulse@esp and of an error signal: the rule is to seek the set of
parameters that engenders an output signal whose pdf nsatepdf of the transmitted signal. This result is crucial,
since it discloses the possibility of obtaining an efficiequalizer with the sole aid of statistical properties. Mwex,
since knowledge of a pdf implies knowledge of all of its monsed], we have overcome the SOS limitation that
characterizes the prediction-based approach descrilibd Iast section. Finally, the demand for nongaussian Egna
can be understood in a straightforward manner: since arlinBibered Gaussian process remains Gaussian, the idea
of matching pdf's would be, in such a case, restricted to pawemalization.

The BGR theorem was responsible for demonstrating thelitiabf the idea of blind equalization. However, a
decade later, Shalvi and Weinstein demonstrated that theittan of equality between the pdf’s of the transmitted
and estimated signal, albeit solid, was excessively sgtrihdJnder the same conditions, the authors arrive at a blind
expression of the ZF condition with the help of a less resteg@amount of information concerning the involved signals
their cumulants.

Cumulants are statistical measures derived from the cteaistic function [5]. We denote an ordgr, ¢) cumulant
asCY™  Until third order, i.e.p+ ¢ < 3, the cumulants are equal to the moments of a random varlﬁhxlﬂs,cfffl),

e.g., for a zero mean signal, is equal to its variance. Th finder cumulantcg(;), is called kurtosis. Its definition
based on moments is given by:

2

35 = Ky )] = E |ly ()|'] = 28 [ly )] - |2 [4*]] (212)

With this concepts defined, we are now in position to stateStinavi-Weinstein theorem [7]:

Theorem 2 (Shalvi-Weinstein).Under conditions 1, 2 and 3, i {| s(n) |*} = E{| y(n) |*} and |K [y(n)]| =
|K [s(n)]|, then the ZF solution is necessarily attained.

This result shows that, in order to express the ZF conditiostatistical terms, it is not necessary to match all
the moments of the two signals of interest: it suffices to take account the second-order moment and the fourth-
order information brought by the kurtosis. In intuitivertes, this means that, after a sort of power normalization, a
higher-order statistic can be used to conclude the taskdihijnan effective equalizer.

Blind Equalization Criteria

The BGR and SW theorems are results that demonstrate tlotiefieess of the idea of blind equalization and indicate
what type of statistical entity may be employed to countaree the channel effects. Thus, when it comes to building
equalization criteria and algorithms, the theorems aressence, two interesting possible starting points. There a
techniques, such as the decision-directed, Sato and Gadégda, which were proposed without making explicit
use of the framework established by theorems; conversaie is a family of algorithms associated with the Shalvi-
Weinstein theorem. The objective of this section is to erpbe approaches that form, in a certain sense, the class
of the most widely employed blind equalization solutionatdr, we will have more to say on the properties of these
techniques, as well as on their relationships.

" The nongaussianity restriction is, as the reader will motiecurrent in blind equalization and source separation.
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The Decision-directed (DD) approach

The origins of the decision-directed (DD) approach [8] alated to the need for simple practical solutions that
characterized the development of the field of digital comivations. Essentially, the DD criterion can be thought
of as a sort of “modified Wiener criterion” in which the desirgignal is replaced by the estimate provided by the
decision-device. Mathematically, its cost function is defl as:

Tpp = E ||dec(y (n — d)) —y (n)]* . (2.13)

wheredec (-) denotes the decision function. Calculating the gradiettisffunction with respect to the parameters of
the equalizer and applying the usual stochastic approiomate obtain the decision-directed algorithm([8, 1].

The idea behind this proposal becomes clearer if we imadiait is possible to have access to samples of the
transmitted signal during a relatively small training pelsiand that, afterwards, the process of adaptation mustépd
in a blind fashion. If the supervised stage is capable of edgeng a situation in which the equalizer “opens the eye
pattern”, it is viable to assume that the message reconsttat the decision-device output will be accurate enough
to guide the blind adaptation process. A modification of iléa gives rise to the Sato algorithm [9], which, in the
context of a system endowed with a multilevel modulatiog.(8-PAM), attempts to recover exclusively the most
significant bit via a DD-like scheme.

Godard - Constant Modulus algorithm

The Godard algorithm, first proposed by Dominique Godard980L[10], is probably the most studied blind
equalization algorithm. It is based on the following criiber:

JGodara = E[ly (n)|" — Ry]", (2.14)

whereR,, is a constant that depends on the kind of modulation emplayéue transmission. This cost function is
based on the notion of minimizing the equalizer output disipa around a constant value dependent on the charac-
teristics of the adopted modulation. An important propeityhe Godard criterion is that it is “phase-independent”,
which is useful to dissociated the equalization task froat tif carrier recovery. By far, the most common choice for
pandgqisp = g = 2, in which case (2.14) is called constant modulus (CM) doterand the associated stochastic
gradient algorithm is known as the constant modulus algarCMA)[10, 11].

Shalvi-Weinstein : The Super Exponential Algorithm

Another important family of algorithms used in blind eqaation is directly obtained from the Shalvi-Weinstein
theorem. Let the equalizer output be expressed as

o0

y(n) = Z c(k)x(n — k), (2.15)

k=—o00

wherec(n) is the combined channel-equalizer respot{sg = w(n) * h(n). Itis possible to show that the relashion-
ship between thép, ¢) order cumulants of(n) andy(n) is given by

> le®)* Y le®)]-
k k

Following Theorem 2, the first condition for obtaining a ZRwimn is thatE {| s(n) |*} = E {| y(n) |*}. If that
is the case, from (2.16) we can conclfdeat " |c (k)| = 1, which means that the last inequality will become an
k

let (2.16)

= e

<oy

equality only if the vector of the combined channel-equalizsponse with a single nonzero element with magnitude
equal to one (i.e., a ZF solution).

Based on (2.16) and on the discussion above, the criterigmoged by Shalvi and Weinstein [7] is to maximize
C},’f;” , with p + ¢ > 2 (higher-order cumulant), subject to the power restrictitime adopted values ferandq are
p = 2, q = 1 (third-order cumulant) angd = 2, ¢ = 2, which results in the kurtosis. The latter is used more often
because the third-order cumulants of symmetric distrimgtiare zero.

® Remembering thak {| s(n) [*} = Cffln) andE {| y(n) |} = c¥{V.
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The power restriction may also be substituted by a normtadizavhat gives rise to the following criterion: maxi-

| y(n)

mization of%. This criterion is used for the deduction of the super-exgmial algorithm, also proposed by
cyy) ?
Shalvi and Weinstein [12].

2.3 Multichannel and Multiuser Systems

Section 2.2 was dedicated to presenting the fundament#iedflind equalization of SISO systems. Henceforth, we
shall discuss some aspects involving the generalizatidhisfproblem to the cases of SIMO and MIMO systems.
In a first moment, we explain how the SIMO framework allows astrmount a structural problem present in the
SISO context. Afterwards, we turn our attention to the MIM&e and briefly expose the tasks of spatial filtering and
multiuser detection.

2.3.1 Equalization of a SIMO Channel and Fractionally-Spaed Equalizers

In Section 2.2, we remarked that, in a practical SISO scengris impossible to attain the ZF condition, since the
action of an FIR channel cannot be completely inverted usimgIR equalizer. Naturally, a sufficiently large equalizer
can be, in theory, employed to reach a desired degree ofamcimr the process of inversion. However, this approach
can be quite unpractical if one also looks for a receiver ligadis simple as possible, which is indeed fundamental in
communications. Fortunately, as we will show in the follogiiit may be possible, in the context of SIMO systems,
to reach a ZF condition by using a set of FIR filters.

This can be achieved, for instance, via the notion of ovepdiagn In order to illustrate the idea, which is simply
that of sampling the received signal with a rdtetimes higher than the baud rat¢T, let us firstly consider the
expression of the received signal, in the absence of nais#h)é classical SISO channel discussed in Section 2.2

z(nT) = > h((n—k)T)s(k). (2.17)

k=—o0

Supposing that the new sampling ratd’is= 7'/ P, we may write

z(nTy) = x(n%) = > h(% — kT)s(k). (2.18)

k=—oc0
Itis possible to show that the samples associated witp-thesequence obey the general form
pT
xp(nT) = z(nT + ?) =x((kP + p)Ts) (2.19)
From (2.18), the following the expression

hy(nT) = h(t =0,...,(P—1) (2.20)

P
t=To+nT+25
can be interpreted as the channel discrete-time impulg®mnss associated with theth sequence. Therefore, it is
possible to view the oversampled signal as being formed &ygtimcatenation of baud-spaced samples filtere@ by
of these subchannels, as shown in Fig. 2.2.

—
—_————— ho(m) x,(n)
0o 1 p1o0 1 () (n)
o) (n 2a(n
x.(n)
x,(n)
Zpa(n) hya (1) Tpa(n)

Fig. 2.2.SIMO channel/equalizer.
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Under these circumstances, a straightforward solutionHHRefilter that process the oversampled sequence, i.e.,
a fractionally-spaced equalizer. This device can be umaedsas a set of baud-spaced subequalizers, as shown in
Fig. 2.3.

Fig. 2.3.SIMO channel withP subchannels.

Notwithstanding the solidity of these ideas, a relevantstjoe can be asked: under what conditions can a ZF
solution be attained in the above described framework? Byed answering it is the so-called Bézout's idertity
which can be enunciated in simple terms as: if theubchannels have no roots in common, it is possible to ohtain
set of sub-equalizers such that a perfect equalizationitonds reached, i.e.,

WH()H(z) =1, (2.21)

where the set of transfer functions of tfiesub-channels by is represented by the vector of polynonifdls) =
[H1(z),...,Hp(2)]T. Analogously, each element of the vector of polynomi&lz) = [Wy(z), ..., Wp(z)] cor-
responds to a transfer function associated with one subkzgu In intuitive terms, this identity simply revealsath
if we wish to invert the channel by passing from a SISO modal 8MO model, it is important that the oversampling
process bring “non-redundant” information to the scendd¢tvjustifies the demand that there be no zeros in common).
Fractionally-spaced equalizers can be adapted via the sarnef criteria discussed in Section 2.2. For the cases
in which the Bézout's identity is valid, and, consequendyZF solution is attained, the convergence analysis of
algorithms like the CMA resembles the efforts of Godard aasidhini, both in terms of mathematical tractability and
in the nonexistence of local minima [14, 15].

2.3.2 MIMO Channels, Antenna Arrays and Multiuser Detection

After having discussed the essential aspects of SISO an@®¢lialization, it is time for us to turn our attention to
the most general case: that of MIMO systems. The MIMO modieieth channel and equalizer can be described, in
simple terms, as a combination of multiple SIMO vector eraas [15], as shown in Fig. 2.4,

Channel Equalizer

o 9 (1)

s:(n)

- y>(n)

Fig. 2.4.Example of a MIMO channel.

% Itis possible to generalize the Bezout's identity as foboW  (z) H () = 2% [13].
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For this model, the channel output can be defined as

x(n)=H(n)*s(n)=> H(k)s(n—k) (2.22)

k

whereH (n) represents the channel response. Analogously, the equaliput is
y(n) =W n)«x(n)=> W(k)x(n-k) (2.23)

Given (2.22) and (2.23), it is possible to define the ideal) @jualization condition as:
W(z)H(z) = PD(z) (2.24)

whereW (z) andH(z) represent the z-transform of, respectivd¥(n) andH(n), P represents a permutation matrix,
andD(z) a diagonal matrix, whose elements are arbitrary fitfers

The possibility of reaching the ZF condition is, in this casgated to the rank of the frequency-response matrix
of the channel [15]. As it was the case in the previous sestithe analysis of blind algorithms like the CMA will be
heavily dependent on the attainability of an ideal solution

Adaptive Antenna Arrays

A classical particular case of the presented MIMO model geewhen/ transmitted signals are captured by an array
of N antennas, each one capable of modifying the gain and thes fias incident waveform. The most common
situation is that in which the array is composed of sens@tsate equally spaced and linearly disposed, as shown in

N~ /.

VoY

Antennas

a(7) a(r) a(n) a4(n)

y(k)

Fig. 2.5.Linear antenna array.

In this context, the received signal consists of a purelyiabsuperposition of transmitted waveforms:
x(n) = Hs(n) (2.25)

whereH is a matrix that contains all relevant information aboutdirections of arrival (DOAS) of the incident signals
and their relationship with the geometry of the array [1].

Several algorithms can be used to adapt the coefficients ahtanna array. The Wiener approach and all blind
techniques discussed in Section 2.2 can be, in theory,ehpiurthermore, there are some solutions that were specif-
ically developed to operate in the environment establighed?.25), such as the Applebaum [16], Frost [17] and
Resende [18]algorithms.

10t is interesting that the reader observe the similarityveetn (2.24) and the perfect separation condition that wilpkesented
in section 2.4.
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Finally, it is important to cite another related problengttbf multiuser detection, which is typically formulated in
terms of a MIMO channel whose input is formed by several dllyitmodulated signals that must be separated at the
receiver. The study of the solutions to this task is an irstémg bridge between the worlds of equalization, which we
have analyzed so far, and of source separation, which isaimaith we are about to enter [19].

2.4 Blind Source Separation

After describing the basics of the multichannel problem,are now in a position to introduce the problem of blind
source separation (BSS). The origin of this subject datek bathe work of Hérault, Jutten and Ans [20], who
addressed the biological problem of modeling the codinateel to the muscle contraction phenomena. Since then,
BSS has been attracting a lot of attention from many reseesoimunities, mainly due its generical formulation,
that broaden the range of applications in which the toolelig@ed under this framework can be applied. For in-
stance, typical BSS problems can be found in biomedicabsigrocessing [21], telecommunications [19] and audio
processing [22]. Furthermore, there are many others ajgits of ICA [23] (Independent Component Analysis), a
data analysis technique that is closely related to BSS.drfdlowing, we shall present the BSS basics, as well the
ICA-based solutions to such problem.

Lets(n) = [s1(n),s2(n), ..., sn(n)]" denoteN source signals and(n) = [z1(n), z2(n),...,zm(n)]" be the
M mixtures of these sources, i.e.,

x(n) = F(s(n)), (2.26)

where the mapping (-) models the action of a mixture system. The model also reptesiee general case of a MIMO
system, as discussed in Section 2.3. Typically, it is assitheg the sources are statistically independent. The aan of
BSS technique is to recover the source signals by adjudimmgarameters of a separating system based solely on the
observed samples of the mixtures. Mathematically, thevex@og process is expressed by

y(n) = §(x(n)), (2.27)
wherey (n) = [y1(n),y2(n),...,yn(n)]" denotes the recovered sources 8fid models the action of the separating
system. This situation is depicted in Fig. 2.6.
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Fig. 2.6.The problem of blind source separation.

The simplest form of the BSS problem takes place when theumg@xirocess is modeled as a linear and instan-
taneous system. Also, it is usually assumed that the nunflsemsors is equal to the number of sourc¥s=t M).
Therefore, the mixture processing in this situation candsedbed as follows:

X = As, (2.28)

where the mixing matribA is of dimensionV x N. It is quite natural that the structure of the separatingesysn
this case be given by
y = Wx, (2.29)

1 For the sake of notation simplicity, the time indeswill be omitted here and in the subsequent parts of this secti
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whereW is aN x N matrix. Ideally, it is expected that the separating systevarit the action of the mixture process,
i.e., thatW = A~!. Nevertheless, it would be equally satisfactory if one daecover a scaled version of the source
vector, or even a permutation of it. These conditions carxpeessed in mathematical terms as

W =DPA !, (2.30)

whereP andD denote a permutation and an invertible diagonal matripeetvely. Thus, any valid BSS criterion
should lead to a solution in accordance to (2.30). In the sleque shall discuss the crucial point of adjusting the
matrix W so that this desirable condition be attained.

2.4.1 Second-Order Statistics Approach

As remarked in [24], until the 1980’s it was usual, in the sigprocessing community, to merge the concepts of
statistical independence and uncorrelatedness betwadomavariables. This was a consequence of the widespread
use of Gaussian models of signal, for which case the notibiredependence and uncorrelatedness are equivalent.
In this context, a first idea [20] to adjust the mathX relied on the following principle: given that the sources ar
mutually independent, and, thus, uncorrelated, the migirsiem can be viewed as a correlator, that is, a system that
correlates the input signals. Therefore, it would be pdssibseparate the sources by guiding the adjustmeW ar
order that the estimates of the sources be uncorrelatethtadind of uncorrelatedness recoverifig

This procedure is usually called whitening and can be peréarby the classical data analysis technique namely
Principal Component Analysis (PCA) [23]. Unfortunatelywias firstly indicated in [20] that the second-order ap-
proach does not guarantee a proper separation. Actualpltained solution for the separating system in this case is
given by

W=QA! (2.31)

whereQ corresponds t&v x N orthogonal (rotation) matrix. In fact, since the effect of@thogonal linear transfor-
mation is to rotate the input vector, the mixtuges- Qs differ from the source in a spacial phase.

Despite its incapability to accomplish the separation,tdsk whitening approach is commonly utilized as a pre-
processing stage in BSS. After the conduction of such stagegdaptation of the separating system is reduced to the
problem of finding the orthogonal matrfQ. This simplification improves the performance of many BSSteques
and, for this reason, it is said that the whitening can beesallalf of the BSS problem. Moreover, there are some BSS
algorithms in which the realization of a whitening stage ieeaessary condition for a proper operation.

2.4.2 Independent Component Analysis

In the seminal work of Hérault et al [20], a learning rule fbe matrixW based on the “uncorrelatedness principle”
was derived. Evidently, for the reasons discussed abogaldorithm fails to separate the sources and, in face sf thi
limitation, they proposed a modification in this strategy.iBtroducing nonlinear functions in the obtained learning
rule, they performed the adaptation¥f in order to produce elements gfthat are nonlinearly uncorrelated rather
than just uncorrelated. This modification is the essenceeoHérault-Jutten algorithm, and was a major breakthrough
in the BSS problem, not only because of its efficiency, butibse it was the first technique to introduce higher-order
statistics (HOS) in the probleth

It was Pierre Comon [25] who clarified this idea by formaliziime concept of ICA. In contrast with the whiten-
ing approach, the main idea in ICA is to adjust the maW¥k so that the elements gf be mutually statistically
independent. Based on Darmois’ theorem, Comon has shoWthi@5f this condition and the following ones

e There is at most one Gaussian Source;
e Matrix A is invertible;

hold, thenW takes the form presented in (2.30); in other words, to reciheindependence implies source separation
up to scaling and permutation ambiguities.

A major point in the ICA theory concerns the conception of sueas that quantify the notion of statistical inde-
pendence. Aiming to derive the guidelines to the develogmkesuch measures, Comon evoked the idea of contrast
function, i.e., a functio (y) that must satisfy the following conditions

2 Interestingly enough, this rather intuitive idea was alspkyed in the blind equalization problem, as discussedeitidn 2.2,
when the linear prediction approach was introduced.

13 1n [23], for instance, it is shown the use of a nonlinear datien measure implicitly brings information about the HoRhe
signals.
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e U(y) should be invariant to permutations and scaling of the vectae.:
¥(y) = ¥(DPy), (2.32)

for any permutation matri¥ and diagonal matri;
e When the elements ¢f are statistically independent, the following expressiomsd be valid

¥(y) < ¥(Ay), (2.33)

for any invertible matrixA.

From these conditions, it sounds natural to define the gadhkoiiCA approach as being the minimization, with respect
to W, of a contrast function.

A possible candidate to contrast function is the concept affuad information, which is defined, for a random
vectory of N elements, as

N
I(y) = Z H(y:) — H(y), (2.39)

whereH (-) denotes the Shannon entropy [26]. A fundamental propentywdbial information is that it is always non-
negative, being zero if and only if the elementsyadire statistically independent. Hence, one may concludestizdn
measure satisfies the conditions described above, andpssquence, that it is a valid criterion to guide the optimiza
tion of W. Nonetheless, the development of techniques in the spititi® formulation may be extremely difficult,
because it becomes necessary to introduce entropy estimsaéiges, which may demand a high computational effort.
Fortunately, there are other means to carry out the separatsk in which no such estimation is needed, as it will be
seen in the following sections.

Maximization of Nongaussianity and the FastICA Algorithm

A well-established approach in the ICA theory is based omtirggaussianity principle [27], which can be understood
through its connection with the central limit theorem (C[3)) Since, in summary, the CLT states that a sum of several
independent random variables tends toward a Gaussiaibdtigin, it is expected that each mixture signal, which is a
linear combination of sources, be “more Gaussian” thandlieces themselves. Taking this observation into account,
a straightforward strategy to perform BSS is to adjust thmasaing system in order to maximize the nongaussianity
of its outputs.

Despite the simplicity of the above justification, the nomgganity approach is solidly and closely related to the
idea of minimizing the mutual information, as shown in [ZBhis fact becomes clear after some algebraic manipula-
tion of (2.29) and (2.35), which leads to

N
I(y) = 3 H(y) = H(x) — log| det(W)]. (2.35)

From this expression, one may notice tliAfx) does not depend on the parameters of the separating systdm, a
therefore, can be ignored in the optimization task. Furtioee, when the matri¥V is restricted to be orthogorté)
and the variance of is forced to be constant, the last term of (2.35) is also @msturing the optimization proce-
dure, which permits us to conclude that the minimizatiorhef mutual information, in this case, is equivalent to the
minimization of the marginal entropies pf Besides, from information theory, it is well-known [26Httthe Gaussian
distribution is the one with maximum entropy over all distions with the same variance. Therefore, the maxi-
mization of nongaussianity is equivalent to the minimiaatof the marginal entropies, hence, to the minimization of
mutual information - tacitly, the nongaussianity approatdo follows the guideline proposed by Comon: to recover
the property of statistical independence.

Naturally, as in the independence-based criteria, we magé la quantitative measure of gaussianity in the
nongaussianity-based approach. One possibility is toavaea criterion based on the kurtosis of the elements of
y, since this cumulant is equal to zero for the Gaussian digtdan. For instance, the maximization of the sum of the
absolute values of these kurtosis is in accordance with dimgawussianity principle. Nevertheless, there is a serious
drawback related to the sensibility of kurtosis to outljievkich may deteriorate the performance of the algorithms
derived from this approach [23].

4 1n the nongaussianty approach, a whitening pre-processagg is mandatory, since the solution must be restricteah tor-
thogonal matrix.



2 Unsupervised Signal Processing: Concepts, ApplicationsTrends 41

In order to overcome this limitation, an alternative appiobhased on the concept of negentropy was developed.
In accordance with the nongaussianity approach, the negsntf a random variablg, which is defined as

J(y) = H(yy) — H(y), (2.36)

wherey, is a Gaussian random variable with the same variangeDiie nice property of this quantity is that it always
assumes a non-negative value, being zero only for a Gaudsaibution. Hence, the maximization of negentropy
would lead to a variablg that is the least gaussian as possible. At a first glance, weentiat the evaluation of
negentropy requires probability density estimation aralwation of marginal entropies, as in the mutual infornatio
approach. Fortunately, it is possible to resort to the Yol approximation [23]

() o [B{G(y)} — E{(Gy,))}]” (2.37)
whereG(+) is a nonquadratic function.

The most celebrated technique for BSS of linear mixturesFastICA algorithm [29], was conceived in the light
of the nongaussianity approach. In particular, its ver$iwmegentropy maximization has been applied in many real
problems. The widespread use of this algorithm can be jedtiy two remarkable features. The first one is its fast con-
vergence speed, and the second is related to the possitfiigparating sources in a kind of serial processing. While
the former characteristic is due to the adoption of a Nevstomethod-based algorithm, the latter is a consequence of
the nongaussianity criterion be exclusively based on mafgneasures of the vectgr

In mathematical terms, the FastICA algorithm for negentnopximization is described as follows

W, — E{xG’(wiTx)} - E{G”(wiTx)}wi
wi —w; /[ w; |,

(2.38)

wherew?! denotes the-th column of W. The extraction of one source can be readily obtained frdmléarning
rule. After that, if the extraction of more than one sourceésired, this one-unit algorithm should be performed
again. However, it becomes mandatory in this case that thera strategy capable of avoiding the recovery of a
source that was already obtained. The answer to this prolslémunded on the orthogonality &V. Actually, since

the ideal solution for this matrix lies on the space of orthrog matrices, it expected that the column$falso be
orthogonal when the ideal solution is reached. Thereforegdplying a mechanism that guarantees the orthogonality
of its columns, the difficulty can be overcome. There are tvathods to accomplish this task. In the first one, called
deflation, orthogonalization is done in a serial fashiomt fls, having estimated the first column, the second one
should be orthogonal with respect to it, and so on. On therdthard, in the symmetric orthogonalization approach,
the orthogonalization oW is conducted at the end of each iteration of the several aitéastances.

Infomax and Maximum-Likelihood Approaches

The Infomax criterion [30] is one of the most relevant infation-theoretic unsupervised learning rules for neural
networks. In order to describe how this idea is applied indbetext of BSS, let us consider the neural network
presented in Fig. 2.7. The Infomax-based training reliethermaximization of the information transferred between
x andz, which, for the BSS model, culminates in the maximizatiorthaf joint entropy ofz. After some algebraic
manipulations, this idea can be expressed by the followptgrozation problem

N
max H(z) = max E{Z log(g; (w;x))} + log(] det(W)]), (2.39)

=1
whereg; (+) corresponds to thieth activation function.

xl(n)—>f \—> z(n)
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yn(n)

L J gn(.) zn(n)

Fig. 2.7.Separating system in the Infomax criterion.
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It is also possible to interpret the Infomax scheme undeiatgs of the Maximum Likelihood (ML) estimator
of the linear BSS model. In [31], Cardoso showed that thepecgehes are equivalent when the activation functions
are defined in consonance with the cumulative distributiointhe sources. More precisely, the expression (2.39)
corresponds to the likelihood function for the BSS model mvbl;é-) represents the cumulative of th¢h source. As
a matter of fact, it seems more reasonable to conceive tloenbof as a sort of approximation of the ML approach,
as no knowledge about the distributions of the sources imasd in the BSS problem. Interestingly enough, several
works [32, 33] point out that the separation task can be padd even when rough approximations of the cumulative
distributions are considered, which attests the the@let@idness of the Infomax criterion.

A very illustrative interpretation of the Infomax and ML apches arises when the expression (2.39) is rewritten
in the following terms [31]

max H(z) = H‘l)‘i]n D(py(y),ps(s)) + constant (2.40)

where D(py(y),ps(s)) correspond to the divergence of Kulback-Leibler (KL) betwethe distributions of the
source®, s, and of their estimateg. Given that the divergence of KL expresses an idea of distéetween dis-
tributions, we may interpret the criterion (2.39) as a disttion matching strategy, i.e., the aim in this paradignois
adjust the separating matrW in order to obtain an output distribution as close as possibthe hypothesized one.

The first efficient solution to the BSS problem was conceivedifthe Infomax ide#. By performing the optimiza-
tion of (2.39) through the application of the steepest detseethod, Bell and Sejnowski [30] derived an algorithm
that is extremely simple to implement, and yet permits tlpasstion of a great number of sources. Mathematically,
the Bell-Sejnowski (BS) algorithm is described by the faliog learning rule

W — W + { E{G(Wx)xT} + (WT)~1}, (2.41)

where i corresponds to the step size a6d-) = [G1(:)...Gn(+)] is a vector of functions such that,(z) =
dlog(g,;(x))/dx. If the expectation is omitted in this expression, one rgaaltains the online version of the BS
algorithm.

Another solution to optimize (2.39) is founded on a varidthe gradient method called natural or relative gradi-
ent[34, 35]. The principle behind the optimization of a dosiction.J (W) via this strategy is to seek at each iteration,
an incremend so that/(W + § - W) be maximized. This idea is in contrast to the classical d&imbf gradient, in
which one searches for an incremeéxtso that/(W + A) be maximized. As pointed out by Amari [35], due to the
Riemannian structure of the parameter space associatedhgitmatrixW, the steepest direction is not given by the
ordinary gradient, but instead by the natural gradient.oddingly, he proposed the following optimization strategy

W — W + u(I+ E{G(y)y’ HhW. (2.42)

It is especially worthy of attention that this learning rdiees not demand the inversionWf at each iteration, thus
being more efficient than the BS algorithm.

Nonlinear PCA

As discussed in Section 2.4.1, source separation canno¢fbermed with the sole use of second-order statistics,
which means that it is impossible to accomplish such task llyge PCA framework. Besides, we have also mentioned
that it is possible to add higher-order statistics to thebfmm by introducing nonlinear functions in second-order
based criteria, as it was done in the Hérault-Jutten alyoriAs a matter of fact, the essence of the Nonlinear PCA
(NPCA) [23] approach is related to the same idea.

PCA can be defined as a technique that will seek a makFisuch that

N
. ) N
W = argmin E{|[x — ) _(w{x)w; |}, (2.43)

7
=1

wherew; denotes thé-th column of W andw!w; = §;;. In the case of the NPCA approach, the following modifi-

cation is taken into account:
N

W= argign B{llx = (oWl (2.44)
1=
15 In the Infomax approach, hypothesized distributions aresictered.

16 Due to the equivalence between the Infomax and the ML appasathe algorithms derived for one of these case can blgirec
applied to the other one.
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whereg; () correspond to a nonlinear function. One should keep in nfiatithere are others nonlinear extensions of
the PCA idea [23]. However, this one in special, as discussg®b], is closely related to other criteria in BSS, such
as the maximum likelihood and maximization of nongaussyapproaches.

It is equally possible to rewrite (2.44) in matrix notation:

Inpea(W) = B{|x — W g(Wx)||*}, (2.45)

whereg(:) = [g1(*) ... gn(*)]. In the NPCA approach, it is quite common to perform a preterting stage and, as a
consequenc@V should be an orthogonal matrix, that is to SWW 7’ = 1.

Likewise the strategies mentioned before, a learning rated on the steepest descent method can be derived for
the optimization of (2.45), as shown in [23]. Nonethelelss,MSE formulation associated with NPCA technique has
motivated the use of a recursive least squares (RLS) afgoriin [37], a RLS-based algorithm, called PAST, was
derived for the PCA problem. Its extension for the NPCA wasppised in [38]. The main attractive of such technique
concerns its fast velocity of convergence in terms of itere, which in turn is a feature inherited from the RLS
algorithm.

2.5 Equalization: Going further

After presenting the foundations of blind equalization &hidd signal separation, in this section we analyze the rela
tionship between SW, CM and Wiener criteria and the convergéssues of the unsupervised equalization algorithms.
Also, we present a blind equalization approach based orirearl prediction error filters in addition to the optimal
predictor in the minimum mean squared error sense.

2.5.1 Relationships Between SW, CM and Wiener Criteria

Two of the most important blind equalization techniques, @M and SW criteria, were proposed independently and
following different principles and developments. Li andBj in [39], were the first to search for equivalences between
them. Through an elaborate mathematical developmentutheis concluded that there exists a direct correspondence
between the stationary points of the two criteria. Reggligraached the problem differently, using a very simple and
elegant method [40]. The first step of his line of reasoning tearewrite both cost functions in polar coordinates,
which revealed that the analyzed version of the SW cost fomcatid not depend on the radial coordinate. In order
to perform a meaningful comparison, the CM cost function ejatemized with respect to the radius, resulting in the
so calledreduced error surface/cacqa(#), Which also depended exclusively on the angular coordsndiiee main
result of this mathematical manipulation is expressed by:

9 1
Jomred(0) = R (1 T sz(9)) (2.46)
whereX = 3 if y(n) is real and\ = 2 if y(n) is complex. It is seen through (2.46) that the reduced exudase
associated with the CM criterion is a deformation of the esarface of the SW criterion. Since the operator is
monotonic and order-preserving, the equilibrium pointshef CM cost function are the same as those of the SW
cost function. It is important to note that, even though theildrium points are the same, the error surfaces and the
resulting algorithms are different, having different ntgestments and convergence speeds.

Itis also possible to compare both criteria directly viagh&dient vector of their cost functions [41]. The differenc
between them is given by a gain factor that, for the SW costtfan, isr¥ = E [y*(n)] /E [y*(n)], and, for the CM
cost function, is* = E [s*(n)] /E [s?(n)]. The importance of the power restriction in the SW criterigiven by
E [y*(n)] = E [s*(n)], is then easily seen. Only in case of a perfect equalizaié?) ¢olution,r¥ = r. Moreover,
both gradients have the same equilibrium points if the SW ftogction is power-constrained. If this is not the case,
the SW cost function presents valleys of minima that corttaanCM minima [41].

Having established the equivalence between the CM and S@fiarianother interesting issue is to compare them
to the Wiener criterion. Despite the supervised charadtéhe latter approach, it represents a reference result and
an optimum solution. Thus, such a comparison may help in hia¢gyais of how good are the solutions given by the
unsupervised criteria. The subject was firstly treated 881t [42], considering a fractionally-spaced equalising
the mean square error (MSE), which is a measure derived fnenWiener (supervised) criterion, they established
an upper-bound to the performance of CM equalizers, andeower, showed that its minima are close to Wiener
solutions, the two being collinear.
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Specifically for the SW criterion, [43] showed that, as théugeof p increases, the solutions will be closer to
Wiener solutions. However, large valuegadre not used in practice because the optimization of highaer statistics
involves estimators with high variance.

Another comparison between the CM/SW solutions and Wieeegivers was developed in [44], based on es-
tablishing bounds for the CM error surface. In particulansidering the transmitted signal to be binary, i.e.,
s(n) € {—1,+1}, an upper-bound to the CM cost function can be shown to depenivo instances of the
Least Mean Fourth (LMF) criterion [44]:

Jort < \/E[y(n) + s(n — d)* Ely(n) — s(n — d))' (2.47)

whered is a delay. Equation (2.47) shows that the CM cost functiam loa related to a fourth-order supervised
criterion under any equalization delay. In the work, it i®wh that the upper-bound is tighter in the vicinity of “good
solutions”, i.e., equalizers that produce a small resiéualr.
Considering a situation close to the ZF ideal, the authotaiolan approximate relationship between the CM and
Wiener solutions:
 woum (W Rawen + 1)
WWiener,d — T
2W P

It is interesting to note that (2.48) suggests the colliitg&@etween solutions, something that was observed, dlbeit
a distinct context, by [42].

These results indicate that, when both channel and equalige~IR filter, the best Wiener solutions, i.e., those
capable of effectively reducing ISI, are close to the CM miai This conjecture, the study of which is a most relevant
research topic, establishes a scenario in which the CM appris “as solid as a blind technique can be”, since, in
addition to everything we have discussed, it was shown ihtf# the CMA does not converge to spurious minima. It
is important to remark that, in the light of the relationstipcussed above, these ideas are also applicable to the SW
criterion.

In the sequel, we will show, in general lines, the main emgstiesults and studies about the convergence of blind
equalization criteria.

(2.48)

2.5.2 Convergence Issues

The first studies analyzing the convergence of blind eqatiin algorithms considered a rather nonrealistic scenari
of doubly infinite equalizers. These filters have an infinitener of coefficients in both the causal and anticausal
parts. Such a model opens the possibility of calculatingieminima in the combined channel+equalizer response
domain, which is originated by the convolution of the chdmame equalizer impulse responses. It should be noted that
a doubly infinite equalizer is able to exactly invert a FIR rmhel.

In the context of the CM criterion, this analysis startedw®odard [10] and was later detailed by Foschini [46].
Both of them showed that, considering a doubly infinite eigealall the CM cost function minima are ZF solutions.
Foschini went further by showing that the only equilibriuwints of the CM criteria in the channel+equalizer space
were global minima, a local maximum (the origin) and saddim{s, being the last two unstable.

It was not until 1991 that Dingt al. showed the limitations of such approach. In [45], the awgloomsidered a
finite filter and showed that, under an infinite impulse reggachannel model, the constant modulus algorithm could
converge to minima that did not reduce intersymbol interiee. Some time later, in 1992 [47], they showed that
the analysis in the combined channel+equalizer domairdconlly be directly extended to the equalizer parameters
domain in cases for which the convolution matrix had a ttimiall space. The convolution matri¥, is defined by
writing the combined channel+equalizer response in vdoton:

c = Hw, (2.49)

wherec is the combined channel+equalizer responsevaigithe vector of the equalizer coefficients. The convolution
matrix will only have a trivial null space in two situationsliitle practical value: when the channel is simply a gain or
when the equalizer is doubly infinite. This unveils the liamibns of the analysis performed by Godard and Foschini.

The work by [48] is a summary of the prevailing view on the ®ajIt divides the equilibrium points into three
classes: the class of maxima, of which the null vector is the member; the class of Mazo, composed of the global
minima and saddle points, which resemble the non-trivialldagium points discovered by Foschini; and the class of
Ding, formed by the local minima.

The results presented so far were based on a direct anafytbis focused cost function and of its derivatives. A
new and geometrical paradigm was inaugurated by Li and 889 fvho were the first to analyze convergence with
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the aid of the so-called global minimum cones. This appreacisists of defining regions in the space of the combined
channel+equalizer response that contain a single ZF salutbnsidering the possibility that such a solution be not
attained by a FIR equalizer. The authors get to a pair of v@grésting results. Firstly, the normalized kurtosis,
K(b
Knor'rn(b) = (4 ) 5 (250)

%

obtained for the equalizer input and output signals, hagaifgiant influence on the final state of the equalizer.
Furthermore, they provide theoretical justifications foe use of thecenter-spikenitialization, firstly proposed by
Foschini [46].

In [49], Li and Ray Liu conclude that there exists two distigets of possible local minima: those resulting from
the finite equalizer length, since it is not possible to eigezd FIR channel using a FIR filter, and those inherent to
cost functions that are not continuous in the combined claiegualizer response space. The former class is the only
one that is present, for example, in the CM and SW criteridlethe latter class is found, e.g., in the decision-dirdcte
and stop-and-go algorithms [50].

It is interesting to note that the existence of local minimahe CM cost function was firstly seen as a major
disadvantage in comparison with the supervised and unimd@ner criterion. However, a modern view on the
subject tends to be different for two reasons:

e The Wiener cost function is also multimodal if the equal@adelay is assumed to be a free parameter.
e Cost functions like the CM seem to possess the “ability” ohalating “bad equalization delays” from its structure.

2.5.3 Blind nonlinear equalization: the prediction-basedapproach

The need for optimal performance and the continuous systegfinement are the main reasons behind the growing
interest in nonlinear equalization. Usually, nonlineauna@igers are adapted with the aid of a pilot signal, i.e., in a
supervised fashion. This is quite natural, since the ussildf structures and algorithms must be carried out in an
environment as simple as possible. Furthermore, the aggmgd supervised training is reasonable in some contexts
and also gives rise to a more propitious scenario for optiynahalysis. However, a general nonlinear filtering par-
adigm should not rely on supervised learning, since a retersignal may not be available in all cases. This is the
motivation behind the proposal of unsupervised equatimatiiteria. Although criteria based on signal statisticskv
well on the adaptation of linear filters, it is not certaintttteey will ensure the correct adaptation of nonlinear fiter
Actually, the BGR theorem does not hold for nonlinear filf&d]. Ironically, this kind of problem arises exactly from
the great approximation potential of nonlinear structutdgerefore, it becomes imperative to look for unsupervised
equalization criteria adequate to the problem of nonlifigtering. In particular Cavalcante et al. [52] demonstdate
that a prediction approach can be effective in a linear cebrontext.

As stated in Section 2.4.1, linear forward prediction egqualizers are able to equalize minimum phase chan-
nels’. However, such equalizers are not capable of equalizingiimum phase channels. This is not a limitation of
the prediction approach but of the linear FIR structure 832, The use of nonlinear predictors, such as artificial akeur
networks and fuzzy systems, allows the prediction erroaézers to overcome this limitation and makes possible the
use of this type of approach in almost all linear channelades [51, 52, 53].

But there remains a question: what nonlinear structure istswtable to be used as a predictor? To answer this
guestion we must remember that the performance of a predietiror equalizer is related to the accuracy of the
predictor employed, since, the better the predictor, m8tenlill be removed from the received signal. Therefore,
considering the minimum mean squared error (MMSE) as thenality criterion, the best estimate of the channel
output given a vector of past sample@ — 1) = [x(n — 1),...,z(n — m + 1)]T, is given by [54]

Z(n)=E[z(n)|x(n—-1)]. (2.51)

Considering a linear FIR channel and additive Gaussiarentiie evaluation of (2.51) leads us to the optimal
forward predictor input-output mapping [51]

fMMSE (X (TL — 1)) = WTF (X (n — 1)) (252)
where [l (n—1)—uy||*
_xr= D=7

Fi(x(n—1)) = — () (2.53)

N, ’
- Ix(n—1)—u,|*

z exp | — 507

j=1 '

7 1t can be shown that maximum phase channels can be equatiregilinear backward prediction error filters [4].
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w is a weight vectorm;, i = 1... N, are the channel state vectol, is the total number of channel states aﬁ;d

is the noise variance. The channel states are defined asdhaaltoutput vectors in the absence of noise [51, 55].
Given the channel states and the noise variance, the wesgldrew can be determined through the minimization of
the squared prediction error using linear optimizatioridold is also possible to write the weight vector as a funttio
of the channel states [51]. The optimal backward predictpping is similar to the forward predictor. The differences
between them are the weight vector and, of course, the irgmiox

It is important to note that, like the Bayesian equalizei] [8& optimal predictor can be implemented using fuzzy
systems, which allows us to use the numerous training tgaksithat were developed in the context of this field to
obtain the optimal predictor.

The performance of the nonlinear prediction-error eqeadiis related to the absolute value of the first coefficient
of the channel impulse response. On the other hand, the badkwediction error equalizers have their performance
associated to the absolute value of the last coefficient.bignger the absolute value, the lower is the symbol error
rate [51]. Therefore, the forward and backward predictionreequalizers generally perform better in minimum and
maximum phase channels respectively. For mixed phase elgrthe best performance is usually achieved using a
cascade of forward and backward prediction error equalizeorder to select the channel coefficient which has the
biggest absolute value [51].

2.6 Blind Source Separation: Going Further

Despite its simplicity, the instantaneous model considénghe early development of blind source separation tech-
niques provides a good approximation for the mixing progeayariety of scenarios. Nevertheless, in some situations
the tools developed so far could not be directly applied,mode specific models should be used in order to design
new methods. In the following, we present some other modelfsttave been considered in the literature, as well as
some recent approaches developed to recover the sourtesadcenarios.

2.6.1 Convolutive Mixtures

The convolutive model can be viewed as an extension of thenkdBel in a SISO system. Indeed, there are practical
instances, such as in the separation of audio signals [R&hich the measured signals must necessarily be understood
as being formed by a combination of different sources andygel versions of them, as seen in Section 2.3. A model
of this kind bears a strong resemblance with the idea of datien, and, in the case of blind source separation, this is
exactly the reason why it is usually designated by the nancemfolutive mixture.

In the convolutive case, the relationship between the ssusod observed signals is given by

L—-1
x(n) =Y Ax-s(n—k) (2.54)
k=0

whereA (k) denotes the mixing matrix associated with the ddlay

The first approach to solving the convolutive problem is @ctiextension of BSS techniques developed for the
instantaneous case. However, instead of adapting an umgmxatrix, a set o matrices undergo adaptation following
the classical ICA framework. In this case, however, theeseald order indeterminacies are followed by a filtering
ambiguity. This new indeterminacy is due to the fact tha; {flx) andsz(n) are independent processes, sojale) x
s1(n) and fa(n) x sa(n), wheref;(n) and fo(n) are arbitrary filter responses ardlenotes the convolution operator.

Due to its similarity with the instantaneous case, a nafpploach to solving the problem is the time-domain BSS,
where ICA is applied directly to the convolutive mixture ned7, 58]. In this case, a set of matriéess adapted
with the objective of recovering the sources. The approatieses good separation once the algorithm converges,
since the ICA algorithm correctly evaluates the independesf separated signals. However, ICA for convolutive
mixtures is not as simple as ICA for instantaneous mixtuaad,the process may be computationally demanding for
long convolutive mixtures.

Another possible approach is the frequency-domain BSShictwthe separation of the sources is performed in
the frequency domain [59, 60, 61]. Applying the Fourrienstrm to Eq. (2.54) we obtain

X (w) = A(w) - S (w), (2.55)
whereX (w),A(w) andS (w) represent, respectively, the Fourrier transfornx 6f.), A (n) ands(n).

18 Or, equivalently, a set of filters.
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Eq. (2.55) shows that the original convolutive problem clgo &e expressed, in the frequency domain, as a set of
infinite instantaneous mixing problems indexed by the fesmyw, sincew is a continuous variable. In practice, the
values ofw are divided into a set of intervals (bins), and, for eachrirgk we have a single instantaneous mixture
problem, to which complex-valued ICA can be applied [59]eTherit of this approach is that the BSS algorithm
becomes simple and can be applied separately to each freghen Also, any complex-valued instantaneous ICA
algorithm can be employed with this approach. However, #renpitation ambiguity of the ICA solution becomes a
serious problem. Consider that; andy; » represent the outputs obtained by the ICA algorithm appbdtequency
bins#1 and#2, respectively. Due to the inherent ambiguity of ICA, theseo guarantee that the outpyts; and
y1,2 are, in fact, different portions of the same source. Hender o the transformation of the signals back to the
time-domain, it is necessary to align the permutation irhefaequency bin so that a separated signal in the time
domain contains frequency components from the same soigireal .SThis problem is well-known as the permutation
problem of frequency-domain BSS, and some methods wer@peaito solve this indeterminacy [62, 63].

In the discussed approaches, it is considered that the kdogelabout the sources is restricted to the fact that
they are independent between each other, which charaetexiblind scenario. However, in some applications, some
features of the sources are known a priori and can guide sigrdef the separating system. For instance, the sources
could be not only independent between each other but alspased of i.i.d. samples, as in the case of digital com-
munication signals. For this scenario some specific metbad$®e applied , including a recent proposal [64] in which
a set of nonlinear prediction-error filters is used to redheeconvolutive problem to an instantaneous one.

2.6.2 Nonlinear Models

In the most general scenario, the mixing process may notditrtbuld of a linear system, requiring that nonlinear
models be used instead. In such a case, the observed sanoplelbe given by

x = F(s), (2.56)

whereJ(-) denotes a nonlinear mapping. Therefore, the solution oNibrdinear Blind Source Separation problem
(NBSS) depends on the design of a nonlinear separatingnsyite such thaty = G(x) be an accurate estimate of
the sources.

As mentioned in Section 2.4.2, in the linear case, sourcaraépn can be achieved through the recovery of statisti-
cal independence between the estimates, which yieldsaealiferent criteria related to this principle. Unfortuedy,
the same approach could not be followed for the nonlinear.dasan be shown that it is possible to find nonlinear
functions that provide independence between the estinseded! and, yet, do not recover the true sources. The proof
for this property can be traced back to the work of Darmoisdb1l, and to [65], in which it is demonstrated how to
build families of nonlinearities that recover the indepence but not the sources.

In a certain sense, this particular property can be undmiisdés a direct consequence of the high flexibility of
nonlinear functions, which can mix two random vectors aiiltirender independent vectors. Therefore, one should
consider strategies to restrain the structures under atii@pt which can be achieved by either incorporating some
additional penalizing terms into the cost function [23] restraining the nonlinear mixing models to a smaller class
of so-calledseparable model§6, 67, 65, 68, 69], to which the ICA framework is directlypdipable.

The first approach, in theory, would allow us to deal with géamumber of scenarios, since there is no explicit
restriction to the type of nonlinearity involved. Howevierdetermine this penalizing term is, in most of the casess, no
so straightforward, requiring that additional informati@mbout the mixing process itself be available beforehand.

The second one, in which the range of nonlinear mixing moget®nstrained, led to the development of tools
for specific kinds of nonlinear systems. One such model isthealled Post Nonlinear model (PNL) [66], which is
presented in more detail in the next section.

Blind Source Separation of Post-Nonlinear Mixtures

Firstintroduced in [66], the PNL model consists of a lineaxing stage followed by a set of nonlinear functions, each
one applied only to one output of the previous stage. Thig &frstructure can be useful to model scenarions in which
the mixing process is of linear nature, but the sensors use@tect relevant signals present a nonlinear character.
Examples can be found in communication systems, in whicHifierp are used in the receiver end [66], and, in smart
sensor arrays for chemical substances and gases [70].

Mathematically, thé-th output of an PNL system, shown in Fig. 2.8, is given by:

€T, = fi(ailsl + a;o82 + ...+ a,‘NSN), (257)
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with f;(-) corresponding to a nonlinear function. In matrix form, (@.6an be restated as

x = f(As), (2.58)
wheref(:) = [f1() ... fn ()]

Mixing System Separating System

Fig. 2.8.Post-Nonlinear Model.

Given the structure of a PNL system, a natural choice foréipamating system consists of a similar configuration:
a set of nonlinearities followed by an unmixing matrix, aswh in Fig. 2.8. In mathematical terms, we have:

Yi = wig1(21) + wing2(z2) + ... +wingn(TN), (2.59)
with g;(-) denoting a nonlinear function. In matrix notation the unimixprocess is given by
y = Wg(x), (2.60)

whereg() = [91(-) ... gn ()]

Since independence of the estimates guarantees souraemngdbe next step is to adjust the free parameters in
order to achieve this condition. It is important to remembewever, that in this case, not only a maft¥, but also
a set of nonlinearities, must be adapted. Considering therjuxing/unmixing mapping

y = Wg(f(As)), (2.61)

it becomes clear that the source estimates are statigticalependent when the compositigrn f corresponds to
a vector of linear functions, anWA = AP (A andP denote a diagonal and a permutation matrix, respectively).
However, the separability of such model requires that tverse be also true.

The first formal proof for the separability of the PNL modeingsICA was given in [66]. In the same paper an
algorithm based on a gradient descent procedure was prbpmsaelapt the separating system, and the independence
between the estimates was quantified using mutual infoomadifterwards, other authors presented further investiga
tions about the conditions under which the ICA approach$oidhe PNL problem [69, 71], as well as new tools to
solve the problem.

In [69], a geometrical approach to the problem was developled rationale behind the method consists of adapt-
ing separately the two portions of the separating systemthémonlinear section, a criterion based on the geometry of
the joint distribution of the observed samples was emplogéer that, if the first task is fulfilled, a conventional ICA
technique can be applied in the linear section of the sysimtwithstanding the possibility of separately adjusting
the linear and nonlinear sections, and also using regulardigorithms, the method is restricted to scenarios W®ith
sources.

Following the same idea of adapting the linear and nonliseations separately, in [72, 73, 74] strategies based
on a gaussianizing process are employed. This notion caetter inderstood in the light of the central limit theorem,
discussed in Section 2.4.2. Since each observed mixtune isum of several independent components, it will tend to
a gaussian distribution as the number of sources tend tatynfirhe effect of the nonlinearity present in the mixture
would then be to deviate the random variable from the gansdistribution. Thus, in the gaussianing approach,
the nonlinear section of the separating system is designegistore the gaussian distribution of the signals. If that
condition is attained, the obtained nonlinearity shouldh®inverse of that present in the mixing system, and the
remaining linear mixture could be inverted using any réédiCA algorithm. It is important to note that, in practical
scenarios, the number of sources does not tend to infinitytlalinearly mixed signals may not present a gaussian
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distribution. If that is the case, the gaussianizing preeafi actually introduce distortions to the observatiomkjch
may compromise the solution.

A recurrent issue found in PNL mixtures is the convergendbefmethods used to adapt the separating system.
Even though there is no mathematical proof for the existeridecal minima, in some works [75, 69], it has been
observed that gradient-based strategies could convergmtoptimal solutions, which may indicate an inherent mul-
timodal character of the cost function. Considering thid,faome researches have proposed alternative methods to
adapt the separating system, like evolutionary algoritpg@sand other heuristic search tools [77].

2.6.3 Underdetermined Systems

In the standard linear mixing problem, in which the mixingtrbais square, a BSS solution is reached either by
adapting a separating matrix or by estimating the mixingrixand then inverting it to obtain the separating system.
The problem, however, becomes more involved when the nuofteensors is smaller than the number of sources.
For this kind of mixture, termed underdetermined mixtutés ino longer possible to recover the sources by simply
adapting a separating matrix, and even if the mixing masrkniown, it is not easy to determine how one can estimate
the sources.

The problem of underdetermined mixtures has been littleesded, in comparison with the other cases, despite its
practical interest. A large number of works found in therfitere dealing with underdetermined case follow a two-step
procedure in order to estimate de sources: first, some méthaebd to estimate the mixing matrix. Then, a method,
usually based on some prior knowledge an/or assumptionst @he sources, is employed to estimate the original
signals.

The task of estimating the mixing matrix have been tackled few articles [78, 79], most of then relying on
multilinear algebr® to obtain the mixing coefficients. These methods exploreesproperties of the higher-order
cumulant tensdf of the observed signals to obtain the mixing coefficientsdéfrsome conditions [80], this tensor
can be decomposed into a number of rank-1 terms, each oned&bethe contribution of one particular source, thus
giving sufficient information to determine the mixing coeiints.

Estimating the source signals, either using the estimatexkact mixing matrix, is not a trivial task. Since the
mixing matrix is not square, it is not possible to invert itdaobtain the separating system, as in the regular case.
In the general case, the usual approach is to apply Bayes#mons to estimate the signals. However, even in this
framework, it is necessary that additional informationutiibe sources be available. This may be reasonable in audio,
or even digital communication applications, in which thé&pdf the sources are known a priori.

A third approach to deal with underdetermined mixtures igaglies on the assumption of sparsity of the sources,
or that there exist suitable linear transforms, as the Botransform, that can render the sources sparse [81]. logana
to the ICA case, such approach is named Sparse ComponenisingdCA) [82, 83, 84]. As mentioned in [81], the
determination of the sparse components culminates in &cing problem, for which several techniques can be used.

2.7 Blind Equalization and Blind Source Separation: Some Irportant Relationships

The theories of blind equalization and blind source sefmrags we saw in Sections 2.2 and 2.5, evolved through
different paths and from distinct motivations. Nevertlsslghere are striking similarities in the manner wherel bo
problems are formulated, which raises a very interestirggtion: what kind of relationship can be established batwee
the classical solutions belonging to these fields? Thisameutill be devoted to analyzing three answers thereto.

2.7.1 Maximum Likelihood and BGR

The BGR theorem, discussed in Section 2.2, revealed that@dition could be attained, under certain hypotheses,
in a case in which the pdf of the equalizer output signal isfidal to that of the transmitted signal. This indicates tha
the notion of probability density matching is solid enouglehgender an unsupervised paradigm for eliminating the
ISI when this is feasible from the structural standpoint.

In the maximum-likelihood BSS strategy, which was expose&ection 2.4, it is assumed that the probability
densities of the sources are known a priori, which leadsraliyuo the establishment of a likelihood function whose
rationale is to quantify the ability of a given separatingteyn to produce output pdfs as close as possible to those of

19 The interested reader should see [80] for further details
20 A tensor can intuitively be imagined as a multi-indexed yawainumerical values. For instance, a matrix is a particodse of
atensor.
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the sources. Alternatively, this strategy can be undedsésm process of minimizing the Kullback-Leibler divergenc
between the pdfs of the estimated and the actual sources.

After this prologue, it is noticeable that there is an intimeonnection between the BGR theorem and the ML
BSS approach, since both make use of the statistical infimmeaontained in the pdf of the signals to be recovered
to guide the blind adaptation process. This leads us to gai@nd general conclusion: in a linear structural context
in which perfect inversion is attainable, the idea of pdfchaig constitutes a solid and viable approach to recovering
latent information [85].

2.7.2 Kurtosis and SW

In the context of SISO models, the SW theorem demonstradéi th possible to reach a perfect equalization condition
by forcing the variance of the equalizer output and its ksigtto be equal to those of the transmitted signal. As it was
shown in Section 2.2, this notion naturally leads to the SWegon of seeking a condition in which the kurtosis
is maximal. Interestingly, the idea of maximizing the kitois also reached in the context of BSS, albeit through
a different path. As it was discussed in Section 2.4, suchiogmh comes from the non-gaussianity maximization
principle. In brief, a clear connection can be stated froes¢harguments: in the SISO equalization context of the
SW criterion, the channel is responsible for generatingcaived signal composed of multiple delayed versions of a
transmitted signal. By maximizing the absolute value ofikhigosis, it is possible to obtain an estimate of one of these
versions. On the other hand, in the classical BSS case, dSisilple to extract multiple sources from a set of mixtures
on a one-by-one basis via the same procedure. These stradandicate two things:

e Thatthe problem of equalization can be conceived as probféd$S in which the multiple sources correspond to
the delayed versions of the transmitted signal.

e That the ideas of matching a higher-order statistic and ofimiaing a hongaussianity measure are, in essence,
similar and interchangeable. Therefore, it is possibletoterpret the SW theorem as if it were related to the goal
of forcing the equalizer output to be as nongaussian astgegsihich would mean that the 1SI would be minimal),
as well as to formulate the problem of extracting a sourcenasod recovering a certain level of kurtosis after the
variance of the involved signals is normalized.

2.7.3 Nonlinear PCA and Bussgang

Another notorious relationship involves the Bussgangddtand the idea of Nonlinear PCA. In order to understand
the connection between these two approaches, let us releapithe cost function to be optimized in the NPCA
criterion, given by

Inpca(W) = E{|x - WTg(Wx)||}. (2.62)

As discussed in Section 2.4, a pre-whitening stage is yspaliformed in this case and, as consequeejs
an orthogonal matrix. Taking this observation into accaamd after some algebraic manipulations, it is possible to
rewrite (2.62) as follows

N
Inpca(W) = Z E{ly; — g:(y:)]*}. (2.63)

As noted in [36], this expression evidencies a similaritynmen the NPCA and the Bussgang criteria for blind de-
convolution. Therefore, there is an intimate relationgfeépveen the NPCA cost function and a sum of Bussgang-like
terms.

The comparison, albeit simple, is conceptually instigatiRart | revealed that the development of the fields of
equalization and source separation techniques followeithdas path - from the limitations of second-order ap-
proaches (linear prediction / PCA) to the incorporationarhe kind of higher-order statistic. In the case of Bussgang
techniques, higher-order information emerges from theafisenonlinear estimator in a Wiener-like cost function.
NPCA-based decomposition, on the other hand, depends ointtbeuction of a nonlinear mapping to transcend
the correlation-based PCA framework. It is important tosidar the implication of interchanging this concepts: this
would allow us, for instance, to view the problem of Bussghaged multiuser detection[86] as a classical separation
problem based on NPCA and, conversely, would open the pairgp®f understanding the Bussgang estimators that
form the core of many blind equalization techniques as bpargof a nonlinear decomposition appro&ch

21 More information on this subject can be found, for instarc§23] and [85].
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2.8 Modern trends

In this section, we present two research topics that we densd be promising extensions of the concepts and appli-
cations discussed in this tutorial.

2.8.1 Algebraic Methods

Based on a theory proposed by [87], parameters of continsigusils as, for example, amplitude, frequency and
phase of a sinusoid, can easily be estimated through thiitiesoof a simple system of equations. It suffices to find a
differential equation, satisfied by the desired signal, sehooefficients depend on the parameters to be estimated. The
algebraic and deterministic estimation methods thus deeel, based on differential algebra and operational azdcul
present certain desirable properties:

Signals are treated in continuous-time.
Signals are treated as deterministic and, for this reasmhypotheses on their statistic characteristics are needed
including those related to noise.

e The estimation does not rely on optimization proceduresjltiag in explicit formulas for the identification of the
desired parameters.

e The method is robust to noise

The application of such methods in signal processing isdasemodeling the channel by a rational transfer
function, which, in the time domain, can be seen as a diftf@kaquation. Obtaining the Laplace transform of such
equation enables the construction of a system with the sammder of equations and unknowns. In the case of a
deconvolution or demodulation problem, the solution of #ystem directly yields directly the transmitted symbols.

This method was already applied to the identification/eatiiom of systems (channels) modeled by rational transfer
functions, to the deconvolution of BPSK and QP 3{nary (Quadrature) Phase Shift Keyingjgnals, to the demodu-
lation of CPM (Continuous Phase Modulatipeignals, between others [88]. The next step would be totussource
separation. Since undermodeled (mores sources than sgnases and the addition of noise continues to be opened
problems, these algebraic methods could bring interestisiglts. A simple case of separating two sinusoids in noise,
with different amplitudes, frequencies and phases, waadlr developed successfully [89].

2.8.2 Evolutionary Processing

In general, the problems of adaptive filtering are solvectitnadance with a procedure that encompasses choices of:

An appropriate filtering structure;
A suitable criterion to guide the adjust of its free paranste
A search technique that allow the full potential of the comaltion between structure and criterion to be explored;

There are many scenarios in which a pair structure / critemiast be used that originates a multimodal optimiza-
tion task in the parameter space. This commonly occursn&iance, in the contexts of blind SISO equalization, of
supervised and unsupervised nonlinear equalization ahdiraf separation of post-nonlinear, underdetermined and
convolutive mixtures. Under these circumstances, it bexoighly attractive to look for search tools that possess no
only the local search potential that characterizes the Iwidmployed gradient techniques, but also a global search
capability that avoid convergence to suboptimal solutions

The field of evolutionary computation [90] has produced a benof solutions that meet these requirements.
Evolutionary techniques are based on the implementationawhanisms inspired by concepts drawn from theories
that attempt to explain biological processes in which tleaidf evolution plays a key role. In the context of signal
processing applications, the most widely employed classvofutionary techniques is that of genetic algorithms
(GAs). Genetic algorithms, whose origin can be traced badke work of John Holland [91], are population-based
optimization techniques founded on the following notions:

e That of treating each possible solution to the focused prolds an individual of a population and the parameters
of each solution as coded genetic information.

e That of establishing an intimate connection between thefaostion to be optimized and the notion of fitness of
a given individual.
That of creating mechanisms that attempt to emulate thedfieatural selection.
That of promoting eventual changes in the genetic patrimoihyhe population by means of reproduction
(crossover) and mutation operators.
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The first two items of this list indicate the manner whereby given optimization problem can be “translated
into evolutionary terms”. The two other aspects are relatethe operation of the genetic algorithm itself, which
is an elegant combination between the “invisible hand” dlurel selection and the processes through which the
individuals suffer modifications. It is important to remahat the crossover operator is responsible for combining
different solutions in a way that evokes the idea of locard®awhereas the role of the mutation operator is to
generate spurious modifications that significantly widensitope of the search process. Genetic algorithms have been
applied to several estimation and modeling problems [92].

Another evolutionary paradigm that has been successfpliied in the context of signal processing is that of
artificial immune systems (AIS) [93]. Among the techniquekiging to this field, we highlight an artificial immune
network called opt-aiNet, which was first proposed in [94}jeTopt-aiNet is a search tool whose modus operandi is
inspired by two theories about the process of antibody neitiog in the organism of mammals:

e The theory of clonal selection and affinity maturation, whjzresents a view of the immune system in which
defense cells become more specialized with the aid of a méxrhahat combines fitness-proportional mutation
and an associated selection process. This view can be toaées kind of small-scale evolution.

e The immune network theory, which conceives the immune systea network endowed with determined “eigen-
behaviors” even in the absence of antigens.

The combination of these two features is responsible fadyecing a technique with a remarkable balance between
local and global search mechanisms, and, furthermoreptepécontrolling the population size in accordance with
the complexity of the search problem at hand. The opt-ailletieen applied to variety of signal processing problems,
and, in all cases, it was verified that its use was responfEibkesubstantial increase in the global convergence rate in
comparison, for instance, with classical gradient-baggdaaches.

In our opinion, the use of evolutionary tools in signal pregiag problems is particularly justifiable in the context
of scenarios characterized by a pronounced multimodabciterrand of applications that require a performance very
close to the limit of optimality, since these tools have a patational cost that is significantly higher than that of any
gradient-based technique. This tradeoff opens two petispsc

e That evolutionary tools be widely employed in offline apptions, which are common, for instance, in source
separation.

e Thatsimpler evolutionary algorithms be developed to fet@ “real world” implementations. This objective is the
rationale of the so-called micro-GAs [95].
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3.1 Introduction

The theory of tensors is a branch of linear algebra, catiattilinear algebra The word “tensor” was first introduced
by William R. Hamilton in 1846, to denote what is now callewdulus In 1899, Woldemar Voigt was the first who
used this word in its current meaning. The first tensor notatiand developments were done by Gregorio Ricci-
Curbastro around 1890 in the context of differential geayét broader acceptance of tensor calculus was achieved
with the introduction of Einstein’s theory of general raldy, around 1915.

A different way of viewing and treating a tensor was devetbpetween 1960 and 1970, when the attention was
given to the analysis, factorization or decomposition afdtorder tensors. Tucker [1], Harshman [2], Carroll and
Chang [3] and Kruskal [4] are the first “players” in the dey®itent oftensor decompositions/hich can be seen as
extensions of matrix decompositions to higher-orders. Agithem, two types have been extensively studied in the
literature, while being focus of several applications ifiedent domains. These are the Parallel Factor (PARAFAC)
decomposition [2, 5], also known as Canonical Decompos{@ANDECOMP) [3], and the Tucker3 decomposition,
which is a generalization of principal component analysidigher orders [1]. A solid contribution to the area of
multilinear algebra and tensor decompositions was giveDélathauwer in 1997 [6], who generalized the concept of
matrix Singular Value Decomposition (SVD) to tensors oft@gorders, with applications to blind source separation
problems.

Around 2000, Sidiropoulos introduced tensor decompasstas a powerful modeling and signal processing tool
for array processing problems in the context of wireless mamications. This interdisciplinary research field has
gained more and more attention, and several recent cotitriisuhave proposed tensor models for a wide variety
of signal processing problems, such as blind multiuseratietefor wireless communication systems including Code
Division Multiple Access (CDMA) and Orthogonal FrequendyiSion Multiplexing (OFDM) systems [7, 8, 9, 10, 11,
12, 13], high-resolution direction finding [14], blind beforming and equalization [15, 16, 17], multipath parameter
estimation [18, 19, 20], and multiantenna space-time @pfii, 21, 22, 23, 24], among others.

From a wireless communications point of view, the fact thatreceived signal is, for example, a third-order tensor,
means that each received signal sample to be processewisadsd with a given coordinate in a three-dimensional
space, i.e., it is modeled by three indices, each one of witiehacterizing a particular type of systematic variation
on the received signal. In such a three-dimensional spacéagisof the received signal tensor can be interpreted as
a particular form of signadliversity. In most of cases, two of these three axes accourdfaceandtime diversity di-
mensions. Thepaceadimension corresponds to the number of receiver antenniée tivetimedimension corresponds
to the number of symbols processed at the receiverektra(third) dimension generally depends on a particular type
of processing that is done either at the transmitter or atebeiver or both. For instance, in a CDMA system this third
diversity dimension is thepreadingdimension which appears due to the use of a spreading cotle &iansmitter.
Similarly, the use of temporal oversampling at the outputaxdth receive antenna or multicarrier modulation such as
OFDM at the transmitter also creates such an extra dimensitre receiver signal, which is calledersamplingand
frequencydimensions. In multiantenna coding problems, the aedeindancyalso plays the role of the third signal
dimension. More attention is generally given to decomparsit of third-order tensors @hree-way arrayssince this
is the case in most of the wireless communication applinatencountered in practice.

The rest of this chapter is divided as follows. In Section Baekground on fundamental aspects of tensor decom-
positions is given. The focus is on Tucker3, PARAFAC and traised Block-PARAFAC decompositions, which are
the most important ones in the present context. This seatEmintroduces some notations and useful properties. In
Section 3, some recently developed applications of tenscompositions to wireless communications are presented.
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The focus is on the use of tensor decompositions for a unifiedieting of oversampled, DS/CDMA and OFDM sys-
tems, for the design of new multiantenna coding technigaied,for the estimation of wireless channel parameters.
The applications are illustrated by some simulation resiilhe chapter is concluded in Section 4.

3.2 Background on Tensor Decompositions

This section is focused on the decomposition of higherfotelesors (multi-way arrays). Tensor decompositions,
also referred amulti-way factor analysiss an area of the multilinear algebra that characterizessoteas a linear
combination ofouter product factorsDepending on the considered approach, tensor decompuwsitan be viewed
as generalizations of Principal Component Analysis (PGASingular Value Decomposition (SVD) to higher-orders.
The analysis of a tensor in terms of its factors is useful @bpgms where aultilinear mixtureof different factors or
contributions must be identified from measured data. In tmext of wireless communication signal processing, the
computation of an observed data tensor decomposition afloweparate the signals transmitted by different sources.
This is exactly the goal of several signal processing problthat are addressed in this chapter.

In the following, some tensor decompositions are presemfede attention is given to decompositions of third-
order tensors othree-way arrayssince this will be the case in most of the applications entened in this work.
Therefore, each considered decomposition is first disduassuming the third-order case. This will simplify their
exposition and understanding.

Notations and PropertiesSome notations and properties are now defietl, A~ andA' stand for transpose, in-
verse and pseudo-inverseAf respectively. The operatdriag(a) forms a diagonal matrix from its vector argument;
BlockDiag(A1 - - - An) constructs a block-diagonal matrix 8f blocks from its argument matrice®, (A) forms a
diagonal matrix holding théth row of A on its main diagonalyec(-) stacks the columns of its matrix argument in a
vector;® ande denote the Knonecker product and the Khatri-Rao produspeetively:

}X<>E3::[}Xl(ngi,.”,fX1g@)E}RL

whereA = [A.;...A ] € C'*E andB = [B.;...B.g] € C/*E. We make use of the following property of the
Khatri-Rao product:
(AoB)T(AoB) = (ATA)® (B'B), (3.1)

where® is the Schur-Hadamard (element-wise) product. Gikeg C'* %, B € C/*%, C € C#*F andD € C%*7,
we have:
(A @ B)(CoD) = AC o BD, (3.2)

and
(A®B)(C®D)=AC®BD. (3.3)

In this paper, scalars are denoted by lower-case leftets. . ., «, 3, . . .), vectors are written as boldface lower-case
letters(a, b, . ..), matrices correspond to boldface capitads B, .. .), and tensors are written as calligraphic letters
(A,B,...).

3.2.1 Tucker3

The Tucker3 decomposition was proposed by L. Tucker in tkigesi[1]. It can be seen as an extension of bilinear
factor analysis to third-order tensors. The Tucker3 deausition is also a common name to denote the SVD of a
third-order tensor [6]. The Tucker3 decomposition is gahierthe sense that it incorporates most of the other third-
order tensor decompositions as special cases. The Tuckeodrgposition of a tensdé € C'*/*K can be written in

scalar form as:
P Q R

Lig,k = Z Z Z @i,pbjaChrIp.a,rs (3.4)

p=1g=1r=1

wherea; , = [A]ip, bjq = [Bl;, andcg,, = [C]y,, are scalar components tifree factor matricesA € C/*F,
B € C7*%? andC e CK*E respectively, and, ,.» = [Sl,.q.» IS @ scalar component of ticere tensoig € CF*@x1,

It can be concluded from (3.4), that a Tucker3-decomposesbteis equal to a linear combination (or weighted
sum) of PQR outer products, where the coefficient (or weighting factdfreach outer product term is the corre-
sponding scalar component of the core tensor. Weeak the number of factors in the first mode of the terdéor
Similarly, @ and R denote the number of factors in the second and third mod#&s Dfie Tucker3 decomposition can
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Fig. 3.1. The Tucker3 decomposition.

be referred as a tensor decomposition that allmteractionsamong factors across the three modes of the tensor [2].
An illustration of the Tucker3 decomposition is given in F&j1. The Tucker3 decomposition can be stated without
using the triple sum and resorting to thenode product notation.

Definition 1. (n-mode product) The--mode product of a tensdf € C1*2xxIn and a matrixA € C/»*In,
denoted byX x,, A is specified as:

IW,
[ X Aliyin, i tdmsingarin = D Tirizoeoin1sinsins 1oine @i (3.5)

inp=1

The result of am-mode product is a tensor of the same order, but with a nétvdimension/,,. It is straightforward
to definen-mode products acting on more than one mode. Successivede products are associative, i.e., for two
matricesA € C/»*I» andB € C’/=*I~ we have that [6]:

(:X: Xn, A) Xm B = (:X: Xm B) X A (36)
Taking this definition into account, we can alternativelpesss the Tucker3 decomposition as:
DC:9x1Ax2Bx3C. (37)

Alternatively, we can state the Tucker3 decompositiongisimatrix-slice notationThis notation characterizes the
tensor by a set of parallel matrix-slices that are obtaing@licing” the tensor in a given “direction”. Each matri¥ee

is obtained by fixing one index of a givemodeand varying the two indices of the other two modes. For a tbider
tensor there are three possible slicing directions. WeXall € C/*% the i-th first-mode sliceX.;. € CK*! the
j-th second-mode slicandX..,, € C*7 thek-th third-mode sliceIn order to obtain the matrix-slice notation for the
Tucker3 decomposition, we rewrite (3.4) as:

Q R P
Lijk = Z Z bjqCh,r (Z “i7p9p7q7r> ’ (3.8)
p=1

q=1r=1

and define an “equivalent” (first-mode combined) core as:
P
ul® =" aipgpar =19 x1 Aligr- (3.9)
p=1

Thei-th matrix sliceX,..,i = 1,..., 1, is given by:
X,. =BUWCT, i=1,...1, (3.10)

whereU'” is thei-th first-mode matrix-slice of the transformed core teris € C’*@*%, The other two matrix-
slice notations are obtained in a similar way, by changiegdtder of the summations in (3.4) and defining

Q R
b
Ut = D biapars Upgn = D Chrlpars (3.11)
q:l r=1
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as scalar component of the transformed core terigd?ts= [G x, B] € CP*7*E andU(®) = [§ x5 C] € CP*@* K,
This leads to:
X, =CUYAT, j=1,.1 (3.12)

and
X.,=AUYBT, k=1, . .K. (3.13)
Let X, € CKI™*J X, ¢ CI7*K andX3 € C7E*I pe the first- second- and third-mode matrix unfoldings(of
These matrices are defined as:
X.1 X.1. Xi..
Xy = , Xo = ol Xs=| |,
X.K X.J. X7..

It can be shown from (3.10), (3.12) and (3.13) tkat, X, andX3 can be expressed as:
X; = (C®A)GBY, X,=(B®C)GAT, X;=(A®B)G3C7, (3.14)

whereG, € CEPxQ Gy € CPRXE gnd G5 € CYEXP gre unfolded matrices of the core tensprwhich are
constructed in the same fashion as (3.14), i.e.:

G.1 G.1. Gi..
G, = , Go = , Gz = . (3.15)
G.r Go Gp.

Each one of the three matrix unfolding representations.itd(3are different rearrangements of the same information
contained in the tensog.

The Tucker3 decomposition is not unique, since there argit@fsolutions for the factor matrices and for the
core tensor leading to the same ten¥orin other words, the Tucker3 decomposition alldinee rotationor linear
transformations on the three factor matrices (providettti@inverse of these transformations is applied to the core
tensor) without affecting the reconstructed ten¥orin order to see this, let us define nonsingular matrifgse
CP*P T, € CO*Q andT,. € CF*E, Considering the unfolded matrX; and using property (3.3), we have that:

X; = (CT.T;' ® AT, T, ")G1(BT, T, ")"
=[(CT.) ® (AT,)] [(T.' ® T, )G T, " | (BT)",
ie.,
X; = (C'®A)G B, (3.16)

whereA’ = AT,, B’ = BT, andC’ = CT, are transformed factor matrices a6 = (T, ! @ T, )G, T, " is

a transformed Tucker3 core. Equation (3.16) means that we & infinite number of matriceA’, B/, C' andG/
giving rise to the same matriX;. This fact clearly states the general nonuniqueness of tlck€F3 decomposition.
Complete uniqueness of the factor matrices and the corertefis Tucker3 decomposition is only possible in some
special cases, where at least two factor matrices have spewéabstructure that allows a unique determination of
the transformation matrices. It has been proved that partigueness (i.e., uniqueness of at least some factorgof th
model) may exist in cases where the Tucker3 core tensor Ereomed to have several elements equal to 0 [25].

Special cases: Tucker2 and Tuckerl
Consider a Tucker3 decomposition and rewrite (3.4) as:
P Q R
rk =303 b (z g>
p=1qg=1 r=1

or equivalently,

P Q
Li, gk = Z Z ai7pbj7th7q7k, (3.17)

p=1g=1
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Fig. 3.2. The Tucker2 decomposition.

K P K

Il x = 7 Pl H
J

7 A
Fig. 3.3. The Tuckerl decomposition.

wherecy, . has been absorbed in the catg, -, giving rise to an equivalent covg, , i i.€., hp g = [S X3 Clp g,k
Equation (3.17) is the scalar notation of an equivalent @2klecomposition. Note that the Tucker2 decomposition
is simpler than its Tucker3 equivalent, since the numberéioproduct terms has been reduced@. A Tucker2
decomposition also arises from a Tucker3 one when one o&ttterfmatrices, sag, is equal to the identity matrix.
The matrix-slice and unfolding notations for the Tucker@eaan be easily obtained from (3.10), (3.12), (3.13) and
(3.14) by settingC = I andG = H € CP*@*K The Tucker2 decomposition is illustrated in Fig. 3.2.

Now, let us rewrite (3.4) as:

P Q R
Qj.p <ZZ bj,qck,rgp,q,r> )
1 g=1r=1

Tijk =
p

P
Ti gk = Z ai7php7j7k, (318)
p=1

where bothb, , andcy, - have been absorbed in the cgyg, ., resulting in another core, ; . i.€.,hp k= [G X2 B x3
C],.;.x- Equation (3.18) is the scalar notation of a Tuckerl decaitipo. A Tuckerl decomposition also arises from
a Tucker3 one when two factor matrices, $andC, are equal to identity matrices. The matrix-slice and ufifad
notations for the Tuckerl case are obtained from (3.10)2)3(3.13) and (3.14) by settilg = I;, C = Ix and

G = H € CP*/*K Figure 3.3 illustrates the Tuckerl decomposition.

3.2.2 Parallel Factors (PARAFAC)

The PARAIllel FACtors (PARAFAC) decomposition, also knows@ANonical DECOMPosition (CANDECOMP),
was independently developed by Harshman [2] and C&r@hang [3] in the seventies. It is also known by the
acronym CP (Candecomp-Parafac). For a third-order teiitsisra decomposition in a sum dfiple productsor
triads. PARAFAC can be equivalently stated as a decomposition ofeetway array in a sum of rank-1 tensors. The
PARAFAC decomposition of a tenséir € C/*7/*X has the following scalar form:

Q
Tijk =Y QigbjqChg, (3.19)
g=1

wherea; , = [A]; 4, bj.q = [B]j.q andcy, , = [C]y, 4 are scalar components of factor matrides C/*?, B € C/*?
andC € CK*¥ respectively( is the number of factors, also known as thek of the decomposition. The columns
of the first-, second- and third-factor matricksB andC are respectively called first-, second- and third-miadtor
loadings Other synonyms for the columns Af, B andC areloading patternsr loading vectorsin Fig. 3.4, a third-
order PARAFAC decomposition is depicted. From the threesibtes slicing directions, we get the following matrix
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K /CD /C@

B
] x — BD B@
7 A, A@
Fig. 3.4. The third-order PARAFAC decomposition.
writings for the PARAFAC decomposition:
X;. =BD;(A)CT,
X.;. = CD;(B)AT,
X., = AD,(C)BT. (3.20)
By stacking row-wise the first-, second- and third-modeessliwe have:
[ X1 AD,(C)
X;=1| @ |= : B = (CoA)B”,
| Xk ADk(C)
[ X1 ] [CD.(B) ]
Xo=| @ | = : AT = (BoC)AT,
| X | | CD,(B) |
(X5 ] [BD1(A) ]
Xs=| : | = : Cc’ = (AoB)C”. (3.21)
| X | [BDi(A) |

One of the most interesting properties of PARAFAC is its wieigess. Contrarily to bilinear (matrix) decomposi-
tions, which are in general not unique for ranks greater than(rank-one matrices are unique up to a scalar factor),
the PARAFAC decomposition of tensors of rank greater tham @an be unique up to scaling and permutation of
factors.

The first uniqueness studies of the PARAFAC decompositiaewene in the seventies by Harshman [2, 5]. The
deepest formal uniqueness proof was provided by Kruskad]inruskal derivedsufficientconditions for unique-
ness of third-order PARAFAC decompositions of real-valtextsors. Around two decades later, Sidiropowdbsl
[7] extended Kruskal condition to complex-valued tens@&isliropoulos& Bro [26] further generalized Kruskal's
unigueness condition t&/-th order tensors. In [27], Sidiropoulos and ten Berge shibthat Kruskal’s condition is
not only sufficient but alsmecessaryor @@ € {2,3}. Further PARAFAC uniqueness issues were addressed by Jiang
& Sidiropoulos in [28], who derived necessary and sufficiemtditions for uniqueness of the so-callesbtricted
PARAFAC decomposition (i.e., those where at least one fanttdrix is full column-rank).

The study of the PARAFAC uniqueness condition is based orfuthéamental concept df-rank (Kruskakrank),
which is more restricted than the usual concept of matrik.rdine k-rank concept was proposed by Kruskal in his
seminal paper [4], although the teridruskatrank” was first used by Harshman and Lundy [29]. Fheank concept
has been extensively used as a key concept for stating PARARAqueness.

Definition 2. (k-rank): The rank ofA € C'*?, denoted by-a, is equal tor iff A containsat leasta collection ofr
linearly independent columns but no collection-of 1 linearly independent columns. TKeuskalrank (or k-rank)
of A is the maximum numbérsuch thateveryset ofk columns ofA is linearly independent. Note that therank is
always less than or equal to the rank, and we have thak ra < min(I,Q),VA.

Consider the set of matrix-slicesX;.. = BD;(A)C”,i = 1,---, I, defined in (3.20). If
ka + kB + ke > 2Q + 2, (3.22)

the matricesA, B andC are unique up to common permutation and (complex) scalingeif columns [4, 7]. This
means that any matrice%’, B’ andC’ satisfying (3.20) are linked t&, B andC by:
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A'=AITA,, B =BIIA,, C'=CIIA;, (3.23)
wherell is a permutation matrix and;, As and A; are diagonal matrices satisfying the condition
A1 A A3 =1g. (3.24)

Condition (3.22) is also necessaryif < 3. However, ten Bergé& Sidiropoulos provided in [27] a simple counter-
example to the necessity of (3.22). They also claimed tleatitiqueness of PARAFAC depends on the particular joint
pattern of zeros in the factor matrices. This was betteragmpt and clarified by Jiang Sidiropoulos in [28]. They
provided both necessary and sufficient uniqueness condifar PARAFAC, when one factor matrix is full column-
rank. This justified the examples shown in [27]. When the elet® of A, B and C are drawn from a continuous
distribution, thek-rank and the conventional rank coincides, and the PARAFAQueness condition (3.22) can be
equivalently stated as [7]:

min(I, Q) + min(J,Q) + min(K,Q) > 2Q + 2. (3.25)

Condition (3.25) is sufficient but not always necessaryhasvs in [27]. For general PARAFAC decompositions with
@ > 1, two necessary conditiorier uniqueness are [30]:

min(raoB, TBoC, TCcoa) = Q@ and min(ka, ks, kc) > 2. (3.26)

This condition can be stated alternatively. Note thatg < min(IJ,Q), rBec < min(JK,Q) andrcoa <
min(K1I, Q). Note also that the meaning b > 2 is that matrixA has no proportional columns (otherwisg = 1,
according to the definition df-rank). It is thus equivalent to state that, uniquenessssipte only if: i)the product of
any two dimensions of the tensor is at least equal to the nupflfactorsand ii) none of the three factor matrices is
allowed to have a pair of proportional columns

It was proven in [28] that condition (3.26) is necessary amfficgent, provided that one factor matrix is full
column-rank. Assuming for instance, th@tis full column-rank i.e.,;,c = @, it is easily checked that condition
(3.26), can be equivalently stated as:

raos =Q and min(ka,ks) > 2, (3.27)

which means that PARAFAC is uniqu# the Khatri-Rao producA ¢ B is full column-rank and ii) neitheA nor

B has a pair of proportional columns. In [28], it was also prsgmban equivalent necessary and sufficient condition,
which is valid for general PARAFAC decompositions and i9assier to verify than (3.26) and (3.27). PARAFAC
models where at least one factor matrix is full column-ramgkeery frequently encountered in the applications we will
consider. Hence, the aforementioned conditions havel@saece to our context.

3.2.3 Constrained Block-PARAFAC decomposition

LetX € Ch*12xIs pe a third-order tensor and define two sets of matrices)} € CL* A" and{B@} ¢ Cl2x 7"
with typical eIementSL(‘” w = [AD] b9 = [B@], ), and a set of) third-order tensorg€?} €
i 01,7 i, 7y Q2,75

CR” XS XIs yith typlcal elementz(‘& oy - We consider the following decompositionf

Q R(tz) R(Q)

Liyia iz = Z Z Z a (q) e (<2) NO¥ (3.28)

qg=1 (q) 1T(4) 1

The tensorz;, 4, i, is decomposed in the form of a sum @ftrilinear blocks, every block being itself the sum of
R(‘I)R(‘I) triple products. Note that?q)_(q), i1 =1,..., 11, contributesRé‘” times anch? iz =1,..., 1, con-

12,75
tributesk " times and:! ‘{q) oo contributesk{” R? times to the composition of the full tensor. This tensor deco
position constitutes a generallzatlon of the PARAFAC deposition with constrained structure originally proposed

in [13, 12]. This generalization was also studied in [17]cdn be viewed as a particular case of the block tensor
decomposition introduced in [31].

Define a set of) matrices{C(V), ..., C(@} € Cls*Ri” By” in the following way:

(9) _ (a9 _
[C ],L-37(,,A§L1)_1)Réq)+,,étn == Cr%‘”,ré”,ig’ q= 17 ceey Qa
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where the;-th matrixC(@ is linked to tensof(?) by:
Ccl = [vec(CFfll)T) e Uec(CF?ﬁdT)]T,

C( € CRY xRy being theis-th matrix slice ofc(?), i3 = 1, ..., I3. The matrix sliceX.;, € C'+*2 of X can be
expressed as [13]:

Q
Z (A9 1T< ))Dig(C) (1T R@ ® BW)T, (3.29)
g=1

where1R<q) anlem are “all one” vectors ofd|men5|od%(‘” x 1 andR(‘” x 1, respectively.
Usmg property (3 3), let us make use of the following egl@naes:

A(Q) ® 12&1) = (A(Q) ® 1)(IR§L1) 2y 1;;0)) = A(Q) (IRYI) b2 1£éq)) = A(q)w(Q)7

and
12@1) & B(q) = (1 & B(q))(lgm & I}{é‘”) = B(q)(lg(tﬂ & IRéQ)> = B(q)@(q)’

where

w0 = Thw ® 17 &) = 1§§q) ®I (3.30)

R(q) ) R;'”

are constraint matriceghat model interactions or linear combinations of factdrsliferent modes within the-th
block. They have dimensiors? x R{Y R(” andRr{” x R{Y R\, respectively. These definitions allow us to rewrite
(3.29) as:

Q
— Z ADg@p, (CD)BDHNT, (3.31)
q=1
Now, let us define the following block-matrices:
A=[AW .  AQ] e chxi
B=[BW, ... B@)] cchxh
C=[CW, . .. C@] gclsxhs

where we have defined o
q=1

Define alsdblock-diagonal constraint matricess:

W = BlockDiag(@™® ... w(@) (R, x Rs)
& = BlockDiag(®V --- @) (R, x Rs). (3.33)

Taking these definitions into account, (3.31) can be expressa compact matrix form as:
X ., = A¥D,;, (C)(B®)". (3.34)

By comparing (3.20) and (3.34), we deduce the following espondencesA — A¥, B — B® andC — C.
Hence, by analogy with (3.21X,=1 2.3 can be written as:

X; = (CoA®)(BP)T, X, = (BPoC)(A¥)', X3 = (A¥-BH)C”. (3.35)

The demonstration of (3.35) is provided in [13].
From the previous equations and definitions, the followiag be said about this tensor decomposition:

1. It is the factorization of a third-order tensor in a sumptructured/constrained PARAFAC blocks, everyone
of them being a function of threeomponent matriced (9, B(2) andC(?), Each component matrix models the
variation of the tensor data along one dimensiomode

2. Within the same constrained PARAFAC block, it is pernditteat columns of different component matrices are
linearly combined to generate the tensor data. The tetanactionis used to denote such a linear combination.
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3. The interaction patterns within a block are modeled bycthvestraint matrices (9 and$(?, which may differ
from block to block.

4. When the computation of the decomposition is performieg térmbetween-block resolutiois a synonym of
separabilityof the @ blocks, while the ternwithin-block uniquenesstands for a unique determination of the
three component matrices of the corresponding block (uptmptation and scaling). It depends on the particular
interaction structure of each block.

Note that (3.34) can be interpreted as a structured/constt®ARAFAC model [2, 3] with augmented component
matricesA¥, B® andC. It is also worth noting that the within-block structure afnstrained Block-PARAFAC is
similar to that of the PARALIND (PARAIlel profiles with LINeaDependencies) model recently proposed in [32,
33]. The proposed approach is more general, since it camssidaltiple constrained blocks, each one with its own
interaction structure.

The constrained Block-PARAFAC model can also be linked tokeu2 and Tucker3 analysis [1, 34]. From the
scalar notation (3.28), it is easier to conclude that thislehmaturally takes the form of a sort of “Block-Tucker2”
model with a variable within-block interaction structuhiecan also be linked in some sense to constrained Tucker3
decompositions [35, 27]. Further details can be found if.[17

Theorem 1.Consider the set of matrix-slicés...,, is = 1,...,Is. Assume that the component matricks) e
ChixR”Y B@ e CxR” andC@ e Cl* ™Y 7 gre full-columnrankg = 1,. .., Q. Ifevery se{ A, ... A@)},
{(BW, ... . B@}and{CW, ... C@}islinearindependent, the following condition is necegdar uniqueness of
this decomposition:

Ll > Rz, Iil3> Ry, I2l3> Ry, (3.36)

whereR;, Ro, Rs are defined in (3.32), between-block uniqueness/resaligiachieved, (i.e., the computation of the
model separates th@ blocks), and there are non-singular block-diagonal magsic
(... (@),
T, = BlockDiag(T." - - T!\?)),
T. = BlockDiag(T" ---T(@), (3.37)

c

T, = BlockDiag(T(V

satisfying
-1
(TWoT®) =TW, ¢=1,...0Q, (3.38)

such thatA = AT,, B = BT, andC = CT. give rise to the same matric§X};—_; 2.3, Up to permutation
ambiguities.

The proofis provided in [17].
The conditions (3.36) can be stated in a simpler form. Defipe- max(R§1), cee R§Q)) andR, = ma:c(Rél), cee RéQ)).
Condition (3.36) can be rewritten as:

LIy > QRiRe, Iil3>QRy, LIz > QRy,

which is equivalent to:

min (L_I{Q ], L@J, L@J) > Q, (3.39)
R1R Ry Ry

where|- | stands for the greatest integer number that is smaller te@mgument. This condition guarantees between-

block uniqueness of constrained Block-PARAFAC.

The block-diagonal structure &,, T, andT. means that rotational freedom is confined within the blotks.
other words, the constrained Block-PARAFAC model basveen-block uniquenes4ithin-block non-uniqueness
however, remains in the general cal%@ > 2 and Réq) > 2. Note however, that rotational freedom affecting the
component matrices of a given block is constrained and of&§¥ = (T ® Tl()"))*l, which imposes some
unigueness constraints on the constrained Block-PARAFA@eahthat are not as strong as those of unconstrained
Tucker3 models. For example, complete within-block unitgss is restored (€ is known. Otherwise, iC has some
special structure (e.g. Block-diagonal, Toeplitz, etog aan enforce the underlying structure during the compartati
of the model, in order to restrict within-block non-unigess.
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3.3 Applications of Tensor Decompositions to Wireless Comumications

In several wireless communication systems, the receiggthismultidimensionain nature and can be interpreted as
atensor, althoughitis not always treated as such. A commproach for modeling and processing the received signal
is based on matrix (2D) models. The usually considered déines arespaceandtime[36]. The space dimension

is generally due to the use of an antenna array at the recaivércontains multiple (phase-shifted or uncorrelated)
copies of the received signal. On the other hand, the timesad&ion is due to the fact that the received signal is
processed as a block containing consecutive symbol-spradles. Regarding the blind recovery of information,
blind algorithms generally take special (problem-spexfficuctural properties of the transmitted signals intcoact
such as orthogonality, finite-alphabet, constant-modaitieyclostationarity in order to overcome the non-uniqssne
of matrix decompositions and successfully perform muétitsgnal separation and equalization [36, 37, 38].

From a signal processing perspective, treating the redaigmal as a 3D tensor makes possible to simultaneously
exploit the multiple forms of “diversity” inherent to it faa signal recovery purpose. In a seminal paper [7], it was
shown that a mixture of DS/CDMA signals has trilinear stemetand can be modeled as a third-order (3D) tensor. By
formulating the received signal model as a PARAFAC model,ahthors derived a new receiver for blind multiuser
detection/separation in DS/CDMA systems, which expldiesitientifiability properties of the PARAFAC decomposi-
tion for separating/detecting possibly more users thagranrate. The work of [7] was constrained to flat-fading wirgles
channels with no intersymbol interference. In [8], the PARE modeling approach of [7] was extended to frequency-
selective channels with large delay spread, still in thetexdrof DS/CDMA systems. A two-step receiver, different
from that of [7], was proposed for multiuser separation agdadization. A different tensor modeling for the blind
separation of DS/CDMA signals in the frequency-selectagecwas proposed in [10], where a generalized PARAFAC
model was developed. This model was also shown to be valisidoal separation in Multiple-Input Multiple-Output
(MIMO) DS/CDMA systems [9].

The usefulness of tensor decompositions in signal praeggsiot limited to the separation of DS/CDMA signals.
PARAFAC analysis have also been proposed for other sigmalgssing problems such as multiple-invariance sensor
array processing [14], multidimensional harmonic retld89] blind beamforming with oversampling at the receiver
[15], multiantenna space-time coding [21] and spatial aigre estimation [18].

This chapter provides a survey of some applications of temealeling to wireless signal processing. The consid-
ered applications are: i) unified modeling of oversample§/@DMA and OFDM systems, ii) multiantenna coding
techniques, and iii) estimation of wireless channel patarse

Previous works and new contributions

In several works [7, 8, 10, 9], the problem of blind multiudetection for the DS/CDMA system has been modeled
using tensor decompositions. The main difference betw&garid [8] is that the first does not take a frequency-
selective channel model into account. Both [8] and [10] a@dijpequency-selective channel model with inter-symbol
interference. For the same system model, [8] proposes afddRAFAC model with linear dependencies, while [10]
proposes a generalized PARAFAC model and introduces nentifiddility conditions for this model, which can be
seen as a generalization of those of [7]. Both works assuatetth user contributes with a single path to the received
signal, which is the case when the multipath scattering teérfar field of the receive antenna array. Concerning the
DS/CDMA system, our contribution is to further generali8® &nd [10] by considering that each user contributes
with a finite number of multipaths. This generalization isé&on a new block-tensor decomposition with constrained
structure called constrained Block-PARAFAC [12, 17]. Tteesor decomposition is also used for modeling oversam-
pled and OFDM wireless communication systems. A unifiedpgesative is adopted here for modeling these systems
using a tensor approach.

Our contributions also concern the problem of multiantecoding for MIMO systems. [21] proposed a blind
Khatri-Rao space-time code, which relies on a PARAFAC mdalethe received signal. In this context, we propose
a more general approach, which exhibits increased diyegain, has more transmission flexibility, and is suited to
the downlink multiuser MIMO systems. The proposed mulgamia code combines multistream multiplexing and
space-time spreading and is also an application of the netl Block-PARAFAC decomposition. This application
of tensor modeling appears in [22, 23].

The later problem addressed using tensor decompositicogacerned with the estimation of multipath parameters
of wireless communication channels. This problem is not a&d was addressed in several works such as [40, 41, 42].
With respect to these works, our contribution is to show thigtproblem can be formulated using a PARAFAC tensor
model, which results in a new method for multipath channtfrestion. We also consider the problem of estimating
block-fading MIMO channels using a parametric tensor miodel
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Fig. 3.5. Multiuser/multipath propagation scenario.

3.3.1 Unified modeling of oversampled, DS/CDMA and OFDM sysims

A new tensor model for the received signal is presented, whitifies the received signal model of three systems: i) a
temporally-oversampled system, ii) a DS/ICDMA system [48] &) an OFDM system [44]. For all these systems an
antennaarray is assumed at the receiver front-end. Thegedgensor model assumes specular multipath propagation,
where each user in the system contributes with a finite numfb®@ultipaths to the received signal. We show that the
proposed model is subject to structural constraints in sofiiss component matrices, and that the same “general”
tensor model is shared by the three considered systemsaétoparticular system, the model can be obtained from the
general model by making appropriate choices in the strafdimension of its matrix components. For the DS/CDMA
system, our tensor modeling approach generalizes tho$# ahfl [10], which consider a special propagation model
with a single path per user. It also covers the tensor moagigeed in [15] as a special case, which assumes multiple
paths per user but does not consider a frequency-selebivael model.

Let us consider a linear and uniformly-spaced array)Mfantennae receiving signals fro@ co-channel
sources/users. Assume that the signal transmitted by esahisisubject to multipath propagation and arrives at
the receiver vial effective specular multipath’s The propagation channel is assumed to be time-dispersivé &
considered that multipath delay spread exceeds the ineéitbe coherence bandwidth of the system, so that fading
is frequency-selective. The channel impulse responsesisnaad to spark’ symbols. The discrete-time base-band
representation of the signal received at theh antenna of a linear and uniformly-spaced array atittib symbol
interval is given by:

Q L K
=33 8 am(01) Y gk — 1= 71g)sD (0 — k + 1) + v (n),
k=1

q=1 =1

whereﬂl(") is the fading envelope of theth path of thes-th user. The term,,, (6;,) is the response of the-th antenna

to thel-th path of theg-th user,d,, being the associated angle of arrival. Similarly, the tefmis the propagation
delay (normalized by the symbol peri@g and the terny(k — 1 — 7;4) represents thg-th component of the pulse-
shaping filter response. The channelimpulse response litagfiimation and is assumed to be zero outside the interval
[0, (K —1)T). Finally, s(? (n) is the symbol transmitted by theth user at thex-th symbol interval and,,, (n) is the
measurement noise at theth antenna, at the-th symbol interval.

Temporally-Oversampled System

At the output of each receiver antenna, the signal is sangtladate that ig> times the symbol rate. Due to temporal
oversampling, the resolution of the pulse-shaping filtspomse is increased by a factBr which also increases
the temporal resolution of the received signal by the saro@faSuch an increase in the temporal resolution can be
interpreted as an incorporation of a third axis (or dimemyio the received signal, called tbeersampling dimension
We define the-th oversample associated with theh component of the pulse-shaping filter response tdithg-th

path as the following third-order tensor:

gl(%f)’p* (k71+(p*1)/P*qu); p=1...,P

3 In this model we have assumed that all the users have the samigen of multipaths in order to simplify the mathematical
notation and the presentation of the model.
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The overall channel response, the array response and ftegtssymbols are defined as:
My = 087 % = anlO). )= 5D+ 1)

The received signal can be interpreted as a 3D tefiser CM*N*P |ts (m,n,p)-th scalar component can be
decomposed as:

L K
Tm,n,p = ZZ a( )l Z hl(qk)p Snk + Um,n,p- (340)

q=1[=1 k=1
Equation (3.40) is thescalar notationfor the received signal tensor. It expresses the receigrbkin the form

of summations and products involving three fact@j{ﬁl, h(‘” and s("L associated with space, oversampling and
time dimensions of the received signal, respectively. QBGan be alternatlvely written in matrix-slice form. Let

al? = [a(lql)aéql) ag\‘?l] € CM be the array steering vect(gfk) = [gl(‘ic)lgl(%c)z gl(‘Q p]T € C” be the pulse-
shape response vector, asfff = [\ 59 ... 59 ]7 ¢ CK be the symbol vector and@ = [b{? ... p\?]T ¢ CE

be the vector of multipath gains. Let us also deflne

Al — [agq) ,,,a(Lq)] c (CMXL’ G@ — [ggqi gl(qk) g(Lq)K] c RPXLK, g@ — [qu) . ..S%)]T c CNxK .

S(@ ¢ CN*K s a Toeplitz matrix with first row and column defined 8§ = [sg‘f{o ... 0] and S

[sng séq{ - sﬁ\‘,’)l]T respectively. The overall temporal channel respddsg can be expressed as:

H@ = G (Diag(b?) @ 1) e CP*LE, (3.41)
By comparing (3.40) with (3.28), we can deduce the followdogrespondences:
(I, I, Is, R, RSV, AW B, CW) — (M, N, P, L, K, A", §( H®) (3.42)

Fixing the oversampling dimension, and using the analogly (&.31) and the correspondences (3.42), the space-time
sliceX  , € CM*N p=1,..., P, can be factored as:

Q

Z ADepD,HD) SO +V , p=1,...,P (3.43)

where? =1, ® 1% and® = 17 ® Ik are the constraint matrices of the tensor model.

DS/CDMA System

At the transmitter, each symbol is spread by a signatureegsiing code) sequence of lengthwith period TC =
T/.J, whereT is the symbol period. The spreading sequence associatbdtivéi-th user is denoted bg(®)

[ (@) (Q) . -c(,q T € C’. As a result of spreading operation, each symbol to be triteshis converted into/ ChIpS
The Chlp sampled pulse-shape response tdithg-th path is defined in scalar form as:

0D =gk =1+ G-/ T =7, j=1,...,J.

A scalar component of the overall channel response, i.&udimtg path gains, is defined kJ = l(‘” l(qk)J The
received signal can be interpreted as a 3D tefisorC’M * N>/ and its(m, n, 5)-th scalar component has the following
factorization:
L K J
Tm,n,j = Z asg)l Z Z i— ! C i Sslq)k + Vm,n,j- (344)
g=11=1 k=1j'=1

Equation (3.44) decomposes the received signal in the fésuramations and products involving four scalar factors
f)‘i)l, h(") (“’) andsifjc. Defining
J
(@) _ (@) (9)
Wiy =D My

i

Jj'=1
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as the convolution between the spreading sequence andehal@hannel response, we can rewrite (3.44) as:
Q L K
Tm,n,j = Z Z a( 1 Z Uy q k,j Sn k + Vm,n,j- (345)
¢=11=1 k=1

Note that (3.45) is equivalent to (3.40), wheﬁg—i‘,z,j plays the role ohl(,"k),p andJ — P. Therefore, by fixing the

spreading dimension and slicing the received signal tefiser CM >~V > along the third-dimension, itg-th slice
X j€CMXN j=1,...,J,isgiven by:

Q
ZA(q)WD (UYSDS)T +V 5, j=1,...,J (3.46)
whereU() is defined as:
U@ = cWHW@ ¢ c/*KL, (3.47)
C@ e C’*7 peing a Toeplitz matrix with first row and column defined @’ = {0 ... 0] andC'? =

[cg‘” cé‘” - cf,")]T respectively, and#(? being analogous to that defined in (3.41), whéneplacesP.

OFDM System

In an OFDM system, the symbol sequence to be transmittedjenared into blocks of’ symbols (serial-to-parallel
conversion). Multicarrier modulation consists in lingasbmbining theF’ symbols using an invers€ x N Fast Fourier
Transform (IFFT) matrix. After the IFFT stage, a cyclic prefCP) of lengthk is inserted to each OFDM block
before transmission. Due to the insertion of CP, the resyf@FDM block has lengtlt’ + K. At the receiver, inverse
processing is done. The CP is removed and each received OF@M is linearly combined using alV x N Fast
Fourier Transform (FFT) matrix. Thanks to the use of IFFTIREgether with insertion/removal of the CP, it can be
shown [44] that the lengtti€ convolutive channel is converted into a setfoscalar channels, i.e. the overall channel
at each subcarrier is frequency-flat. This means that theathedannel matrix has a diagonal frequency response.
Letus defmézl(qf) = (‘J)gl(qf) as ascalar componentof the overall frequency channelnss@ thef -th subcarrier,
associated with thé, ¢)-th path. The scalasr F denotes thef-th symbol of then-th OFDM block associated with
theg-th user. The received signal is also a 3D tensor anghits:, f)-th scalar component can be decomposed as:

L
Tmon,f = ZZ a( lh (a) Sn (2) + Um,n,f- (348)

q=1[=1

As it has been done for the previous systems, we are intériestepresenting the received signal tensor in matrix-
slice notation. Let us define the vectdf’ = [s'7) s\ .. ffI)F] € C* collecting the symbols associated with the

nl n2

n-th OFDM block,n = 1,..., N. We defineGl € RF*F as acirculant channel matribuilt up from the(l, ¢)-th
pulse-shape respongg?) — gl(ql)gl( 9. --gl(’qll]T € R¥. Let

0 i 1 =
Qcp = |: KX(FI K) K:| ) Qcp [OFXK IF]
F
be the matrices that represent the insertion and removako€P, of dimension(sF + K)x FandF x (F + K)
respectively, and define(@ + K) x (F + K) Toeplitz matrixf}l(q) Toeplztz[gl ] The(l, ¢)-th circulant matrix
él(q) is given by:
G =0.,690,,.
Note that the circulant structure ﬁu}l(q) € CF*Fis an equivalent representation of the convolution matf¥§>?),

when it is pre- and post-multiplied by the matrices thatespnt the removal and insertion of the CP, respectively. For
further details on this construction, please see [44].

4 The CP is used to avoid interference between adjacent OFDbk&! Its length should exceed the maximum delay spread of
the channel. See [44] for further details.
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DefineG@ = [G{? ... Gl?] € RF*LF as ablock-circulantmatrix concatenating thé circulant channel ma-

trices associated with theth user. By analogy with (3.41), theverall circulant channel matritl(? can be written
as:
H@ — &@ (Dmg(bm)) ® IF) € CFXLF

Taking IFFT/FFT transformations at the transmitter/reeeinto account, the-th useroverall frequency response
channel matrixA(@ = [A\? ... A{Y] € CF*LF can be expressed as:

AD = PHO (1, @ I, (3.49)

whereI' ¢ CF*F is a FFT matrix the i k)-th entry of which is given byy,;, = (1/VF) - exp(—j2rik/N),
i,k = 0,1,..., N — 1. Note thatA!? is a diagonal matrix holding the vectbf?” — [hgf’l) héql) hﬁ;‘{)l]T, on its
diagonal] =1,...,L, i.e.,Al(‘” = Dz‘ag(hg‘”).

Now, collectN' symbol blocks inS(® = [s{?)...sl?) € CF*N_ Taking these definitions into account, tfigh

sliceX ;e CM*N f=1,...,F, of the received signal tenséire C**~ > can be decomposed as:
Q
X ;=Y AD¥D(ANSDE)T +V 4 f=1,...,F (3.50)
g=1

Itis worth noting that (3.43), (3.46) and (3.50) are sSimPARAFAC-based decompositions, and all of them follow
(3.31). The main differences are in the structure and/odiimension of certain component matrices, but the general
tensor formulation is identical. Such similarity allowstodormalize a “general” ounifiedtensor model for the three
systems. In order to achieve this, we defigeas the length of the third dimension of the received signade For
the temporally-oversampled systeify, Ry) = (P, K), for the DS/ICDMA systenils, R;) = (J, K) and for the
OFDM system(I3, R2) = (F, F'). The other parameters, which are common for all the systeens & M, I, = N,

Ry = L. Inits general form, the tensor modeling of the three systeam be unified in the following expression:

Q
X i, = ZA(Q)WD,L-S(Z(‘I))(S(‘I)Q)T +V. i, dz=1,---,1Is,

g=1

where
U =I,01%, € C>*M =17 @1z, € CLRxM2

andZ(@ is eitherH@ (c.f. (3.41)), orU@ (c.f. (3.47)) orA@ (c.f. (3.49)), depending on the considered system.
Table 3.1 summarizes the unified modeling.

Oversampled | DS/CDMA OFDM

(I3) oversamplingP) |spreading{)| frequencyf’)

(R2) delay(K) delay(®) | frequencyf)

7,(@) H@ U@ A@
dimensions P x LK J x LK F x LF
structure no structure | no structurgdiagonal blocks

s(@ s(@ s(@ s(@
dimensions N x K N x K N x F
structure Toeplitz Toeplitz no structure

Table 3.1.Summary of the unified tensor model for Oversampled, DS/CDAMAOFDM systems.

Application to blind multiuser separation/equalization

The blind multiuser equalization problem consists in rezing the information sequence from several users under the
assumption of frequency-selective fading. In other woadsjnd multiuser equalizer performs the tasks of signal sep
aration and equalization. In this paper, we propose a tdrssed receiver performing user separation and equalizati
iteratively. For the temporally-oversampled system, mas#r signal separation is carried out in the 3D tensor space
exploiting oversamplingtime andspacedimensions of the received signal. Making use of the necgssdaqueness
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conditions of the constrained Block-PARAFAC model, we canive an upper bound on the maximum number of
co-channel users that can be blindly separated. By analiby(8v39), we have:

min (1 1 1 L) 2 @ (350

This condition allows us to study the receiver configurasoch as the required number of receive anteniige
number of processed symbalé and oversampling factaP, for a given number of multipaths, a given channel
impulse response lengfki and a given numbep of users.

The alternating least squares (ALS) algorithm [7] is usedHs purpose. Equalization is done in the 2D matrix
space, where the Toeplitz structure of the symbol matrixelbas the Finite-Alphabet (FA) property of the transmit-
ted symbols are exploited to estimate the transmitted syswima subspace method. The key aspect of the proposed
algorithm is that multiuser signal separation (PARAFACgsfaand equalization (Subspace+FA stage) is done in an
iterative way. The goal of the PARAFAC stage is to estimateglcomponent matrices from which the PARAFAC
model parameters can be determined. In turn, the goal oluthepsice+FA stage is to solve the partial rotation ambi-
guity problem that is inherent to the proposed model as veelbastimate the transmitted symbols in the 2D space,
exploiting the FA property. The FA-projected symbols ar&uim used as an input to the PARAFAC stage to refine the
multiuser signal separation in the 3D space. Further dedéthis algorithm can be found in [13].

The performance of the tensor-based blind multiuser receé/evaluated through computer simulations. Each
obtained result is an average over= 1000 independent Monte Carlo runs. For each run, multipath tadains are
generated from an i.i.d. Rayleigh generator while the uget®ls are generated from an i.i.d. distribution and are
modulated using binary-phase shift keying (BPSK). Perggochronization is assumed at the receiver. In all cases,
a block of N = 100 received samples is used in the blind estimation processciiannel impulse response follows
a raised cosine pulse shape with roll-off factor 0.35. Wesater ' = 2 channel taps@) = 2 users and a fixed
oversampling factoP = 8.
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Fig. 3.6.Blind PARAFAC-Subspace receiver versus MMSE receiver péffect channel knowledge.

The following simulation results considér= 2 effective multipaths per user, each path being associait&daw
different cluster of scatterers. We consider a propagati@mario with(611,6021) = (0°,20°) for the first user and
(012, 022) = (0°,10°) for the second one. Note that the first (zero-delayed) patiothf users have the same angle of
arrival. All multipaths have the same average poﬁ@@lqﬁfq] =1,l=1,...,L,g=1,...,Q.

In order to provide a performance reference for the prop®$RIAFAC-Subspace receiver, we also evaluate the
performance of the Minimum Mean Square Error (MMSE) receilre contrast to our blind iterative PARAFAC-
Subspace receiver, the MMSE one assumes perfect knowlédgieétee channel parameters as well as the knowledge
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of the SNR. We consideV/ = 2 and4 receive antennae. Figure 3.6 shows that the PARAFAC-Sabgpeaeiver has
nearly the same BER vs. SNR improvement than that of MMSE p#ttiect channel knowledge. The gap between
both receivers is smaller fav/ = 4. For example, considering a target BERI16f 2, the proposed receiver provides
a loss in performance of 5dB fd = 2 and 3dB forM = 4, with respect to the MMSE receiver.

3.3.2 Multiantenna coding techniques

Multi-antenna coding is an effective way for combating ripath fading (i.e. random attenuations affecting the trans
mitted radio signals) in scattering-rich wireless progegaenvironments, aiming at improving the transmission re
liability in wireless communication systems. This is acleig by means of space-time coding [45]. Multi-antenna
technigues have also the objective of offering high speeffeiencies, by transmitting multiple independent signa
from different antennae at the same time slot and frequeang bin this case, the transmitted signals interfere each
other and should be separated at the receiver [46, 47].

We propose a new multiantenna coding concept that reliesemsar modeling of the transmitted/received signals.
Let us consider a multiantenna system witt}. transmit antennae and » receive antennae. Assume that the wireless
channel is frequency-flat and constant duriNigtime-slots. Each time-slot comprisés symbol periods, wheré’
is the length of the multiantenna code. In the considerediamiénna system, an antenna array)Méf. transmit

antennae is divided int@ transmission layers df/[;q) antennae each, i.eMél) +- 4 M%Q) = M/.. Each layer
transmits its own symbol sequence. Thénput signals can be either assigned to a single receiwr(psint-to-point
transmission) or they can be assignedjtdifferent receivers/users (point-to-multipoint transsidn). The proposed
modeling approach is valid for both cases, although we ddlistinguish between them here.

For each layer, the input stream is demultiplexed iRt®) sub-sequences, which are spread OVMZ(é) x N x P

grid associated wittM%‘” transmit antennagy time-slots and” symbol periods, and then linearly combined. This
is called Tensor-based Space-Time Multiplexing (TSTM). M&del the TSTM structure at theth layer, as a third-

order tensoW(?) ¢ (CM(TG)XR(”)XP, calledmultiplexing tensarNote that this multiantenna transmission is similar to
the multiantenna code of [48], in the sense that each symstfally spread over space and time dimensions. Also,
from a tensor modeling point of view, it generalizes the orappsed in [21]. A general block-diagram illustration is
given in Figure 3.7. The goal of the “antenna mapping” blactoi associate thMg), Mg), e M§Q) signals to the
M. transmit antennae in an optimal way, in order to maximizediersity gain. This is only relevant in scenarios
where the propagation channel exhibits some spatial @tiwal and when the correlation properties are known at the
transmitter. The design of this block is beyond the scopéisfwork. Thus, for simplicity reasons, the multiantenna
channel is assumed to be spatially uncorrelated, whickvalles to bypass the antenna mapping block here.

The discrete-time baseband equivalent model for the rededignal can be modeled using the tensor formalism

as:
Q@ MY p@

(q) (q) (q)
T, p = E E E h s w + U 3.52
MR,N,P mRng?) n,r(@ mgg),'r(‘l),p MR,MN,P> ( )

=1, (@ _qrl@=
q mq?_qu 1

wherez,, , n.p = [X]mx n,p is the received signal sample at the;-th receive antenna, and associated withythl
symbol of then-th time-slot, and

p(@ 5@ w@ 3.53
'rnR,'rnE‘,{,’)’ n,r(@)? 'rrLEI?),T(Q),p ( )

are typical elements of the channel matrix, symbol matrik multiplexing tensor, respectively. Figure 3.8 depicts th
signal transmission/reception model (in absence of npoisejocusing on the contribution of theth transmission
layer. The following definitions are used in this figure:

R@ Méfl)
(9) _ (9) (9) () _ (9) (9)
Cmé?),nyp - Z wm¥)7r<q>,p8”vr(Q)’ Tmpnp = Z hmaymg)cmg),n@. (3.54)
ra)=1 mi® =1
Let
T Ml
SE{J) = [SYIZL e SEZ)(Q) n] e CYr’, (3.55)
T >

be the symbol vector concatenatlm@}‘” data sub-streams, and

S@ = [s(@ ... g@)T ¢ cNxM (3.56)
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Fig. 3.8.Signal transmission/reception modeith layer).

The entries 08(%) are chosen from an arbitrary signal constellation andfgdtis power constrainE [T(S(@# §(2))] =
NR@, ¢=1,...,Q. The channel matrifl € CM=*Mr js assumed to have i.i.d. entries following a zero-mean unit
variance complex-Gaussian distribution, so thfr(HH)| = M/.Mz, whereTr(-) is thetrace operator.

In order to write the multiantenna coding model as a constaBlock-PARAFAC model, we define a set@f

multiplexing matrice{ W@} € CP*M;i” B g

(a)

_ q _
]p,(r(‘l)fl)Mq(fl)Jrr(LI) - w’rng?),'r(q),p’ q= 17 RN Qa (357)

[W(q)
andW = (WO ... W(@)], which concatenates th@ multiplexing matrices. Note tha&v is a matrix unfolding
representation of the set of multiplexing tensg¥i8("), ..., W(@}. We also definég = [S() ... 5(@)] as a matrix
concatenating the symbol matrices for@llayers.

Taking these definitions into account, the received sigerasar can be written in constrained Block-PARAFAC
form as
X3 = (HP 0 S$)WT 4 V5 e CVMrxP, (3.58)

By comparing (3.52) and (3.28), we can deduce the followmgespondences:
(I, I, Is, R, RSV, A9 B, C@) — (Mg, N, P, M, R@ H®, 8, W(®) (3.59)

The received signal tensor can also be expressed in twomtiteix formsX; = (WoHW)(S®)” +V, € CMrPxN
andXs, = (S® o W)(H®)T + Vy € CPN*Mr following (3.21).

Model (3.52) covers some multiantenna coding schemes asépases. By setting!) = ... = R(?) = 1 and
M%l) == MéQ) = 1, it reduces to the multiantenna codes of [21], knowiKhatri-Rao Space-Time Cod&3n
the other hand, fof) = 1 (with R(") > 1 andM7. > 1), it takes the form of d&inear Dispersion Cod§8], although
the code design criterion is different here. Several codi#iad between these ones are possible via the constrained
Block-PARAFAC model, having different diversity-multgsting trade-offs.
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Multiplexing structure

The unfolded multiplexing matri®V is designed to satisfy the conditidV W = M/ 1p, which is a condition
required for performance maximization [21]. Defining

Q
K' =Y ROMY, (3.60)

g=1
we chooséW as a Vandermonde matrix defined as:

(W], 0 = eIz (K =D(p=1)

wherek! = 1,....r@m{? . RO MY For achieving maximum diversity and eliminating multiuaeterfer-
ence, we must choode > K’ so thatW is a semi-unitary matrix.

Interpretation of ¥ and &

In the present context, the constraint matridesand @ admits an interesting physical interpretation. They can be
viewed assymbol-to-antenna loading matricasd their structure reveals the overall joint spreadindtiplexing pat-
tern considered at the transmitter. This means that we aastrewt different multistream space-time coding schemes
by configuring these matrices with 1's and 0's. For examplays$ consided - = 3 transmit antennae and a transmis-
sionforQ = 2 users, which implie§) = 2 transmission layers. Assunig/\"), R = (2, 1), (MY, R®) = (1,3).
From (3.30) ¥ and® in this case have the following structure:

¥=|(01000|, =
00111 00010
00001

Note that both?Z and® are block-diagonal matrices with two diagonal blocks, emwh associated with a given layer.
Each row of®¥ defines thespatial multiplexing factoat each transmit antenna. More precisely, the number of 1's
entries in each row oF defines the number of symbols combined into each transméhaat Observe that the first
and second rows (associated with the first layer) have onéyrmm-zero entry, which indicates that each antenna
transmits only one symbol at a time. The third row contaimedmon-zero entries, meaning that three symbols are
simultaneously transmitted by the third antenna. Now, tetook at the structure ab. Again, we can identify two
diagonal blocks in this matrix. Its number of rows corregp®to the total number of multiplexed data streams. Each
row of @ defines thespatial spreading factoassociated with each data-stream. Its first row has two eon-antries,
which means that the first data-stream is spread over théviiostransmit antennae. The three other rows have only
one non-zero entry, which indicates that the other datasis are transmitted each by one transmit antenna, i.g., the
are not spread in the spatial domain. The chosen spreadittiplexing configuration can be verified in the following
way:

1000

wPHT = 1000 | € CMrxK,
0111

This matrix product reveals the spreadiversusmultiplexing pattern. Reading this matrix product for a fixew,

one can check for the number of data-streams multiplexed@ea antenna by counting the number of 1's entries in
that row. On the other hand, by reading the matrix for a fixddroo, one can check for the number of antennae over
which a given data-stream is spread.

Tensor-based blind detection

We present a blind multiantenna receiver for a joint deted¢tlecoding of th&) transmitted signals. In this context,
the ALS algorithm consists in fitting the constrained BIGRXRAFAC model (3.58) in a Least Squares (LS) sense, by
alternating between the estimationskdfandS. Note that the knowledge of the multiplexing structure &tbceiver
allows us to skip the estimation step¥f, as well as it helps us to achieve the global minimum fasté&h{w10-15
iterations).
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Scheme 1Scheme ’XScheme B
MDD RO @149 | 12 | @y
MP RO 21 [ @1 | @1

Table 3.2. Spreading and multiplexing parameters for the three TSTises with)) = 2 layers.

The results are shown in terms of the average Bit-Error-fBHER) versus the SNR per bit. We considét. = 3,
Mg = 2, N = 10, Q@ = 2 transmission layers wittMé1> = 2 and M%Q) = 1. The code length is set t& =
R(1>M§1)+R(2>M§2), in order to achieve full diversity. We compare the perfoneeof three different TSTM schemes
with different numbeR(%) of multiplexed sub-sequences per layer. Table 3.2 sumesatie transmit parameters for
the three schemes. Each plotted BER curve is the averagel608rindependent Monte Carlo runs. 8-Phase Shift
Keying (PSK) modulation is assumed. The bit-rate of eaclesehis also a performance metric, since it is a measure

of the overall spectral efficiency. For theth layer, the bit-rate is given bﬁ'}ilogZ(u) bits/channel use, wheyeis
the modulation cardinality.

According to Fig. 3.9, the BER performance of layer 2 is brettan that of layer 1 for all the schemes. This is
due to the fact that layer 2 spreads each sequence over mgmiitzantennae achieving a higher diversity gain, while
layer 1 has a single antenna and no space spreading exiseoWo, it can be seen that all the schemes achieve quite
similar performance, but with different bit-rate distrilmn over the two layers. For first scheme, layer 1 achieves a
bit-rate of 2 bits/channel use, which is four times that gkela2. Note that the bit-rate ratio between the two layers
decreases in the second scheme (layer 1 has twice the divfrtyer 2). In the third scheme both layers have the
same bit-rate. The bit-rate values are summarized in tlemkbgf Fig. 3.9. We call attention to the fact that constrdine
Block-PARAFAC modeling for multiantenna coding affords @aiable bit-rate balance over different layers. This is
particularly useful in multi-user (point-to-multipoinlownlink transmissions, where each layer is associateu avit
given user, but users have different diversity-rate resan@nts. Hence, the constrained Block-PARAFAC modeling
approach adds some flexibility to the design of multianteroding schemes in a multi-user scenario.

—&— Scheme 1, Layer 1, (Rate=2)
—¥*— Scheme 1, Layer 2, (Rate=0.5)
— B — Scheme 2, Layer 1, (Rate=1.5) | |
— ¥ — Scheme 2, Layer 2, (Rate=0.75)

~-P>- Scheme 3, Layer 1, (Rate=1)
O+ Scheme 3, Layer 2, (Rate=1)
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Fig. 3.9. Comparison of different TSTM schemes with ALS-based bliatedtion.

3.3.3 Estimation of wireless channel parameters

The issue of parametric multipath channel estimation has legploited in several works [40, 41, 42]. Most of the
approaches are based on subspace methods, which exptbingaiiance properties and/or the knowledge of the
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pulse shape function. Simultaneous estimation of anglesrafal and delays benefits from the fact that paths ampli-
tudes are fastly-varying while angles and delays are slwatying over multiple transmission blocks or time-slots.

In [40, 41, 42], the angles and delays are blindly-estimatidg a collection of previous estimates of the space-time
channelimpulse response. Asin [41, 42], the linear-phagation property of the frequency domain transformed ver-
sion of the known pulse shape function is exploited. Trajrsequence-based space-time channel estimation methods
exploiting the multislot invariance of angles and delaysiaeen proposed recently in [49]. This problem can also be
addressed using the PARAFAC decomposition, which expllogégact that the variation of multipath amplitudes over
multiple time-slots is faster than that of angles and delayBARAFAC model arises thanks to the use of a training
sequence which is periodically extended over multiple tsiuts that are jointly processed at the receiver.

We consider a wireless communication system in which aaligignal is transmitted in a specular multipath
environment. The receiver is equipped with an arrajvbfintennae spaced half wavelength or closer. We focus on
the case of a single-user transmission. The transmittexnrdtion symbols are organized infoblocks or time-
slots. Assume that the time-slots are sufficiently shorthsd the channel fading can be regarded as stationary over
a time-interval necessary for the transmission of a whoheslot and it varies independently from slot to slot. This
is typically the case of Time Division Multiple Access (TDNHvased systems [49]. We assume that the considered
system is training-sequence-based, with the particularactteristic that it consists in reusing the training segee
A known training sequence df symbols is periodically extended over multiple time-slbist are jointly processed
at the receiver. The idea of processing multiple time-slwdsed on training sequence reuse is also knovamudtsslot
processing

The multipath channel model can be interpreted using theAR¥ formalism. Let us write the slot-dependent
space-time channel response in a scalar form as follows:

L
hom je = Z W 155,19k,1- (3.61)
=1

hum.j.k is interpreted here as thfen, 7, k)-th element of a three-way array or third-ordensorH € CM>*7/*X Note
thata,,; = [A(0)]m.1, gkt = [G(T)]k @andgs;,; = [B];., whereB € C/*L collects the fading amplitudes for all the
slots. The three dimensions of the ten$barespace slotandtime. It is also possible to represent (3.61) as a function
of matricesA = A(0), B andG = G(7). The space-time channel associated withttik slot can be regarded as
the j-th matrix slice of the tensdk(, which is obtained by slicing the tensor along #het dimension:

H,;, =AD;B)G", j=1,...,J (3.62)
DefiningH, = [HY, ..., H7, | T e ¢MI*K a5 a matrix collecting the slices of the space-time channel, we get:
H, = (BoA)GT. (3.63)

Let {s(n)}2_, be the known training sequence. During the training petioel received baseband discrete-time
signal impinging the antenna array at th¢h symbol period for thg-th slot,x; (n) = [z1 j(n), ..., 2 ;(n)]T € CM
can be written as the convolution of the training sequendetam;-th channel response:

K-1
x;(n) = Z h;(kT)s(n — k) + v;(n), (3.64)
k=0

whereT is the symbol period ang;(n) is the additive noise, which is assumed to be Gaussian wiianeeos?

v

irrespective of the slot. The temporal support of the chhimpulse response i), KT]. A matrix model for the
received signal can be obtained from (3.64):

X, =H;S8"+V,, (3.65)

whereX ;. = [x;(0),...,x;(N —1)] € CM*N H.;. = [h;(0),...,h;(K — 1)T] € CM*K S is a Toeplitz matrix
formed from the training sequend8,),, » = s(n — k), andV ;. = [v;(0),...,v;(N —1)] € CM*N_ By stacking of
X.,...,X. . column-wise and using (3.63) we can express the received|sis:
X.1.
Xo=| : | =(BoA)SG)T +V,. (3.66)
X. 7.
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We assume that the received signal is sampled with a fd¢tequal or above the Nyquist rate, and that a Discrete
Fourier Transform (DFT) is applied to the received signaéath receiver antenna. Under these assumptions, the
DFT-transformed received signal matrix, denotedXy, can be approximated by [41]:

X, = (BoA)CT +V, (3.67)

whereC = SGF € CV*L F is a Vandermonde matrix given by

1 ... 1
¢1 - oL
L : :
(K-1)  (K-1)
( g
o= eI/ =1 .. L, (3.68)

andG( = Diag(go), with go = DFT(g) € CXF containing the DFT samples of the known pulse-shape fumctio
g = [9(0)g () - g (K —1— $)]. Note that the same information contained in (3.67) can héscearranged as
X5 = (Ao C)BT 4+ V3 e CNM*7 grasX, = (CoB)AT +V, € C/N*M by analogy with (3.21).

In the present context, we make the following assumptiomeeming the multipath channel structure; i) the
array manifold is known and the multipath signals arrivehat array at distinct angles; ii) the multipaths undergo
independent fading and vary independently from slot to afat iii) the multipaths have distinct propagation delays
to the receiver. Under these assumptions, the maximum nuoflveultipaths that can be estimated is given by the
following equation:

min(M, L) + min(J,L) > L + 2. (3.69)

By studying the condition (3.69), we can distinguish twoesas

1. If J > L thenM > 2 receiver antennae are sufficient for estimating angle,ydated amplitudes of thd
multipaths.
2. If M > L thenJ > 2 slots are sufficient for estimating the set of multipath pseters.

PARAFAC-based estimator

The receiver algorithm for the joint estimation of angleslags and amplitudes of the multipaths fully exploits the
trilinear structure of the multipath channel model. It iséd on the classical alternating least squares (ALS) dfgori
for estimating the matriceA, B andC from matricesf(i=17273 in presence of additive Gaussian noise. After ALS
convergencea priori knowledge of the Vandermonde structureAofandF are exploited to eliminate the scaling
ambiguity of the ALS estimation process.

The performance of the PARAFAC-based multipath parametemator is evaluated through computer simu-
lations. The training sequence to be used over.thaots is randomly generated at each run, following a normal
distribution with unity variance. The pulse shape functi®m raised cosine with roll-off factdr.35. The temporal
support of the channel iE = 5. A multipath scenario witl, = 3 paths is assumed. The angles of arrival and time
delays ar€{6;,02,03} = {—10°,0,20°} and{m, 72,73} = {0,1.17,2T'}. The paths are assumed to have the same
average power. The results are averaged over 100 Monte @a$o For each run, multipath fading amplitudes for
the J time-slots are redrawn from an i.i.d. Rayleigh generatand®m initialization is used. If convergence is not
achieved within 100 iterations, we re-start the algoritmomf a different initialization. It has been observed that-co
vergence is achieved within 20-30 iterations in most of tivesr The Root Mean Square Error (RMSE) between the
estimated and true matrices is used here as the evaluatioic foethe estimator performance.

Figure 3.10 depicts the RMSE versus SNR for the estimatidimeodirray (angle) and pulse shape (delay) responses,
considering// = 2 antennae andy = 8 training samples. The results are shownfos 5 and10 time-slots. Itis seen
that the proposed estimator exhibits a linear decrease RMSE as SNR increases. This is valid for both angle and
delay RMSE. The performance gap between angle and delayatigtn is due to the fact that the raised cosine pulse
shape function is not bandlimited, which leads to some dettiynation bias. As expected, the estimator performance
improves as the number of time-slots processed increattéeuggh not displayed in the figure, the RMSE results for
the fading amplitudes are very close to those for the delsyyaeses. Note that these performance results are achieved
with fewer antennae than multipaths and with a very shairitrg sequence, which is interesting characteristic of the
proposed PARAFAC-based estimator.
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Fig. 3.10.RMSE versus SNR results.

Generalization to MIMO channels

For time-slotted MIMO systems, a “block-fading” MIMO chaginmodel can be considered, where fading is assumed
to be constant within each time-slot and changes indepélyderm slot to slot. Different approaches for estimating
MIMO channels have been recently proposed in [50, 51, 5258B,The block-fading MIMO channel can alterna-
tively be formulated as fourth-order PARAFAC tensor moaehich can be exploited for estimating the angles of
arrival/departure, delays and fading gains.

Let us consider a MIMO antenna system with- transmit and\/ i receive antennae, which are closely spaced to
each other, so that the far-field approximation holds. Th&adng environmentis such that there Ardominant paths
linking the transmitter to the receiver, associated wiffedent clusters of scatterers. Each path is charactebyegh
Angle Of Departure (AOD)p;, an Angle Of Arrival (AOA)6;, a relative propagation delay and a slot-dependent
fading gaing;; for the j-th slot,j = 1,...,.J. The fading on the. paths is uncorrelated arsibt-wiseindependent
(block-fading assumption). The finite support of the chaimpulse response is equal 6 symbol periods. The array
response matrices collecting tihepath contributions are defined as

A (9) = @M (81) - a® (6r)] € VT, AT () = aD(n) -2 (1)) € CVr7E.

A matrix collectingZ delayed pulse shape responses is defing@@s = [g(71) - - - g(72)] € CX*L and a matrix
assembling the path fading gains during thslots is denoted b8 = [b; - -- by ] € C/*L.

The lengthA training sequence associated with the-th transmit antenna is represented by a vestpr =
[Smp (1) -+ 5, (N)]T. We call attention to the fact that ther vectors{sy,...,sys,. } are assumed to be linearly
independent but they are not necessarily constrained tathegmnal. We also defin8 = [T'(s1)---T(sn)] €
CN*MrK as a block-Toeplitz matrix concatenatingy Toeplitz matrices.

The MIMO channel is a fourth-order tenstir € CMr>*MrxExJ with typical element,,, ,, . k., and following
a PARAFAC model. As a result, the collection of the multisleteived signal over thg training periods can be
modeled as a third-order tensiire CM=*N>J with typical elementr,, ,, , ;, also following a PARAFAC model.
The PARAFAC model for the channel and the received signafjaen by

L Mr K
R T
hmgmekg = Y a9 (005,105 (6)gk(=7),  Tmpong = D O mgme k. Snome,k T Vmgns
=1 mr=1k=1

with a1 (6) = [AP ()], b (@1) = (AT (S)mpt, gx(—1) = g(k — 1 = 1) = [G(T)]ir, B, = B
Sn,mr k = [Sln,(mr—1)K+k @Ay, ; represents the additive white Gaussian noise,argthe symbol period.
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Let us define an unfolded matrix representatldnc C/MrxMrK for the channel tensdk in the following
manner:

[H](j—l)]VIR+77LR,(TVLT—l)K+k = hmR,mT,k,jV

For simplifying the notation, let us cal(®) = A(®)(9), A1) = A(T)(¢). andG = G(). It can be shown thai
can be factored as a function of the MIMO channel parameters:

H=BoAM)AD @) = Bo AMTT, T =(AD 6G)ec cMrEXL, (3.72)

At each receive antenna, we collé¢tsamples of the received data during the training periodeftklots in a matrix
Xy € CTMrxN defined agXa](j_1)Mptmpn = Tma,n,j- Taking the definitions (3.71) into accouiX, can be
expressed as:

X, =HST = (Bo AW)CT, C=8TeCV*L (3.72)

X5 is an unfolded matrix of the received signal ten¥odefined in (3.70), which follows a third-order PARAFAC
model. The two other unfolded matrices of the received sitgrasor are given byXz; = (A o C)B” + V3
€ CNMrxJ andX; = (C o B)AWT 1V, ¢ C/N*M=r following (3.21).

According to the identifiability results of the PARAFAC mdgthe identifiability of A(®), B, andC is linked to
the concept ok-rank of these matrices [14]. In our context, a sufficientditon for identifying the MIMO multipath
parameters based on (3.72) can be obtained by recallinglusstilts on thé-rank of matrices having Vandermonde
and Khatri-Rao product structures (see [15], Lemmas 1 and®uming tha® ¢ CN*M7 K s tall and full rank, a
sufficient identifiability condition is

kA(R) + kg + min(kA(T> + kg — 1,L) > 2(L + ].)

From the block-fading assumption and assuming distinct G¥0ODs and delays, the following condition is sufficient
for identifiability:
min(Mp, L) + min(J, L) + min(Mp + K —1,L) > 2(L + 1). (3.73)

Column permutation is not relevant to the context of thishpem, and the scaling ambiguity can be eliminated by
exploiting prior knowledge of the space-time manifold strue (i.e., array responses and pulse shape function). The
estimation of the MIMO multipath parameters is done in twages. The first one is blind, and is based on the ALS
algorithm.The second one makes use of the training sequerstimateT’ = (A(") o G) in the LS sense by solving
equationC = ST, i.e., T = STC(con), Separated estimations of the other MIMO channel paramatéf) andG
can be obtained by exploiting the Vandermonde structure&?” and the double Khatri-Rao structure of the MIMO
channel defined in (3.71).

Figure 3.11 depicts the estimation performanceAdt’, A() and G, averaged over thé paths and over 50
independent runs. The RMSE for the overall estimated MIM@nctelH is also shown. We have assumkl}: = 3,
Mg = 2, L = 3, and a raised cosine function with excess bandwidth 0.35/and 4. The considered multipath
parameters are shown in the figure. Pseudo-random trairiugesices ofV = 18 symbols were used ovel = 5
slots. Note that the multipath parameters and the overall®lchannel are estimated with good accuracy, and the
RMSE exhibits an almost linear decrease as a function of Hfe. S

3.4 Summary

Several phenomena in wireless communication systemshvelnerelated to the transmitter, channel and/or receiver,
can be modeled using the tensor formalism, although thigtialways realized or exploited. Modeling this kind of sys-
tems using tensor decompositions or multidimensionayar@lows one to simultaneously exploit the multiple forms
of signal diversity for information recovery purposes, tipwaing the use of blind processing techniques in problems
of signal separation, channel estimation and equalizatiotong others. These are the main benefits of interpreting
wireless communication signals as tensors instead of ceatriVe have made a survey on tensor decompositions and
some of its applications in signal processing for wirelessimunication systems. The chapter has first provided a
theoretical background on tensor decompositions and s$wnge signal processing applications were studied with
focus on recent results. We have shown that the constrailoett- PARAFAC decomposition can be used for unifying
the tensor modeling of oversampled, DS/CDMA and OFDM systdor performing blind multiuser equalization, as
well as for the design of multiantenna coding techniques. diapter has also applied the PARAFAC decomposition
for the estimation of wireless channel parameters.
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Fig. 3.11. RMSE performance of the PARAFAC-ALS estimator.
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4.1 Introduction

Power control is an essential tool in radio resource managénthe transmission power affects the signal quality
and the amount of interference in the co-channel links in @eless system. Then, it is necessary to control the
transmitted power so that the received power is the negessaimum power in order to satisfy the quality of the
communication and, at the same time, to prevent the geoaratiunnecessary interference. Moreover, Power control
is essential concerning energy efficiency, since commtiniteinodes using low power levels means longer lifetime
of batteries for mobile terminals and more energy resouagagable for central nodes as base stations in cellular
systems. Therefore, Power control serves both to managabent of interference in the system and to rationalize
the use of energy resources, increasing the system capeitymportance of this technique can be attested by the fact
that it was standardized in third generation wireless systand therefore requires special attention. Power control
is a much researched subject. However, few works compilespséematic way the different fronts of research in
this area. Therefore, through this tutorial, we intend tovde a survey about the many facets of Power control for
wireless systems. This work is organized as follows. Birste present some basic definitions and the model which
describes the problem and its variables in a general framewdter that, a classification of the algorithms according
to the type of communication infra-structure availableiigeeg. A detailed description of the main algorithms from
the literature is provided. In addition, some recent impraents on such algorithms are presented. Convergence and
practical aspects are also discussed. Moreover, advangied such as the application of Game Theory and prediction
techniques to Power control are exposed. Finally, we ptéserconclusions of this work.

4.2 Models and Basic Definitions

Propagation Channel

The propagation channel is the physics medium which holdptbpagation of the electromagnetic wave between
communication antennas. When a wave travels through a gadipa channel, the transmitted signal is affected by a
power gaing. That is, if the transmitter emits a signal with power the received signal by the receiver will have a
power given by:

Pr="Dt"9 4.1)

In wireless communications, most channel models assuré&iaower gairy depends on three propagation ef-
fects: path loss, shadowing and short-term fading. The pgeie is then composed by the multiplicative superposition
of each of these effects. These three effects are betteaiarglin the next subsections.

Path Loss

The transmitted power is attenuated by a distance-depéfaizar called path los§éPL). One of the simplest path
loss models is the free space loss. In this case, the reqedveetp,. is proportional tol /d? (Square Inverse Law) [1].
For the non-free space case, path loss is usually assumpdrpomal tol/d™ [2], wheren is the so-called path-loss
exponent which indicates the rate in which the path lossees with the distanek That is, the highern, more
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attenuating is the propagation channel. Typical values wéry from 2 to 6 [2]. It is important to emphasize that
depends on environment (for instance, urban, rural, miethtar, height of the constructions) and frequency.

There are various other more complex and precise path-logels1 They may be empirical (e.g. Okumura-Hata
[3] and [4]), semi-empirical (e.g. Cost-231 [5]) or detenistic, such as the ones based on ray-tracing [6]. However,
for a given set of fixed transmission and system parametath,|pss is ultimately a function of distance. For the
purpose of this tutorial, we assume the simple path loss mode

PL(d) = Kd™" (4.2)

whereK represents the perceived path loss at the reference déstétie= 1, which takes into account also all specific
transmission and systems parameters.

Shadowing

Consider a transmitter and the circumference of radiwgith the transmitter in its center. The path loB4. for

all points of the circumference is the same, however powarsgaare different. Such phenomenon occurs due to
shadowing. Shadowing provokes variations in the power gednind its mean (given by the path loss). In cellular
systems, shadowing can be modeled as a log-normal randdeiles[2].

Among the main causes of shadowing, we can cite obstrucfitreaadio signals due to the large obstacles. The
scale of the signal variation due to shadowing is therefaréne order of tens to hundreds of wavelengths, considering
the 1-2GHz frequency band usually employed in cellulareyst For such, shadowing is also known as large-scale
fading [2].

Short-term Fading

Short-term fading is related to fast fluctuations in the amgé of a radio signal in a short time period or in short
covered distance [2]. Its main cause is the propagationfiardit paths of several replicas of the transmitted signal
(multi-paths). These replicas arrive in the receiver ighdly distinct instants and with random amplitude and phase
This occurs due to reflection and scattering of the signahduts propagation. The reflections occur when the wave
reaches objects with dimension larger than the wavelerfgtiesignal. On the other hand, the scattering occurs when
the obstacles have the same order of magnitude of the wajtklen

When several replicas of the signal arrive in the receivesirtdifferent phases add both constructively and de-
structively, generating, fast fluctuations on the amp#tofithe received signal.

Another factor which influences the short-term fading issheed of the Mobile Station (MS) as well as of the
objects around it in the propagation environment. Sincentai$ a spatial phenomenon, the faster the MS moves, the
faster it perceives the signal variations in time.

Quiality of the Signal

In cellular systems, adjacent cells are grouped into dsstea suitable numbe¥/ of cells, as seen in figure 1(a) for
M = 3. The entire set of available channels in the frequency pithlosystem is divided intd/ subsets of channels,
and each subset is allocated to a cell in the cluster. Thisnpds replicated over all clusters generating a concéjgicca
frequency reuse. Cells with the same subset of channelsbied co-channel cells and cause co-channel interference,
as conformillustrated in figure 1(b).

Therefore, due to the frequency reuse in the cellular systéme propagation channels are subject to co-channel
interference. The interference level affects the qualitihe received signal. This influence can be measured through
the Signal-to-Interference-plus-Noise Ratio (SINR). iR in theith link is defined as:

Gii * Pi
= —, 4.3
¥ 7 (4.3)
whereg;;, p; andI; are the power gain, transmission power and the co-chanteefénence plus noise in thiéh link,
respectively. In turn, the co-channel interference plusenim theith link is given by:

M

I; = Zgij “pj v (4.4)
Iy
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(a) Frequency reuse. (b) Co-channel interference.

Fig. 4.1.Co-channel interference generated by the frequency reuse.

whereM is the number of co-channels links ang are the power gains between the Mobile Stations (MS) and the
Base Stations (BS) of different links amnglis the noise power relative t@h link. In some cases, the noise power is
neglected, therefore, in this case we have a SIR (Signhitesference Ratio).

It is obvious that the received signal quality depends oh bioé power gain and the level of co-channel interfer-
ence. Power control is one of the techniques of Radio Resdvemagement which aims to control the quality of the
signal. The values of power gains and interference seruwepass for the formulation of algorithms, as it will be seen
in further sections.

Classification of Power Control Algorithms

The power control algorithms presented in the next sectiamsbe employed both in the forward link (BS to MS)
and reverse link (MS to BS). They can be classified as cenédlidistributed (decentralized) or semi-distributed
algorithms. In centralized scheme, a centralized comrtrdias all information about the established connectiods an
power gains, and controls all the transmitted powers in #ieork [7]. Centralized power control requires extensive
control signaling in the network and cannot be applied irctica. It can be used to give bounds on the performance
of the decentralized algorithms. In a distributed alganitlseveral decentralized controllers control only the paie
one single transmitter, and the algorithm depends only cal laformation, such as measured the SINR or power gain
of the specific user. Finally, in a semi-distributed aldurit a compromise between the two first approaches is used,
that is, control signaling among some controllers is alldwe

4.3 Centralized Power Control

The classical centralized power control algorithm was psegl in [8] by Zander. This algorithm assumes null noise
power and therefore we consider SIRs instead of SINRs. Zandigorithm has the objective of maximizing the
minimum SIR of all co-channel links. It is possible to showattldoing this is equivalent to balancing (equalizing)
all SIRs of the co-channels links while maximizing this eded SIR. This algorithm is centralized in the sense that
in every moment a centralized controller has access to ttie grower gain matrix and may instantaneously control
all transmitted powers of the co-channel users. Therefoeepoint is to find the maximum balanced SIR and the
correspondent powers. In [8] this problem was solved thihcauginequality system and using the Perron-Frobenius
Theorem [9] (see Theorem 1 below). In the following, we eipthe development of the Zander algorithm.

The SIR of theith link can be expressed by:

Vi = M gy - = M - ) (45)
Zj:l Gii “Pj — Di Zj:i Zij *Pj — Di

wherez;; = Z—J Let~,..n be the lowest SIR of all co-channel links. Therefore, forrelatk i, we have:
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Pi
Z]Aiz Zij *Pj — Pi
In the matrix form, this set of inequalities can be expressed

Z Ymins (4 . 6)

1+ Ymin
Ymin
wherep = [p;]i=1,....m @andZ = [z;;]; j=1,... m are the power vector and the normalized link matrix, respelgt The
objective is to determine a positive power vector so thairiequality (4.7) is satisfied ang,,;,, is maximized. The

Perron-Frobenius Theorem is used to solve these problenteoing matrix inequalities. In the following, we state
this theorem.

p>Zp, 4.7)

Theorem 1.Given a nonnegative irreducible matr then:

A has exactly one real positive eigenvaliefor which the corresponding eigenvector is positive;
The minimum reak such that the inequality - b > Ab which has solutions fdp > 0 is A = \*;
The maximum real such that the inequality - b < Ab which has solutions fop > 0 is A = \*.

Equation (4.7) has the same form thanb > Ab, where:

N 14 ’Ymm’ (4.8)

TYmin

A=Z and b=p. (4.9)

A maximum value ofy,,,;,, corresponds to a minimum value bfTherefore, according to the theorem, this value is
A* and the power vector is the corresponding eigenvector afiidiieix Z. Equation (4.8) can be rewritten substituting
the minimum value\*:

1
Yonin = T (4.10)

Therefore equation (4.13) gives the maximum value ofthg,. However, what can we say about the other SIRs?
Let's focus on they,,.... For all links we can write:

Di

< Ymaz- (4.11)
M —
Zj:i Zij " Pj — Pi
In the matrix form, we have:
1 + P)/max
—p<Zp. (4.12)
,)/’HL(L’L‘
According to Perron-Frobenius theorem (item 3), the solutiorrespondent td* andp* yields a maximum value
of “;7& which corresponds to a minimum valuepf,.. and this value is also given by:
! (4.13)
’YH’L(L.’E - )\* . 1 .

As the solution given by eigenvector relative to eigenvalwd the matrixZ yields in the same value for,,,;,, and
Ymaz,» W€ conclude that the choice of this power vector also baatite SIR of all co-channel links, while maximizing
the minimum SIR.

4.4 Distributed Power Control

4.4.1 Signal-Level-Based Power Control

The Signal-Level-Based algorithm was proposed in [10]sEigorithm adjusts the transmission powslt) accord-
ing to the power gain of the correspondent lipk It does not take into account measurements of the SINR eTdrey,
the algorithm can be expressed by a functionpfn decibels:

PiaB = f(gii,aB) (4.14)
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wherep; qp = 10log10(p;) andgii.ap = 10log10(gis)-

The principle of the algorithm is originated from the minzation process of the outage probability. The used
minimization criterion is the Variance Minimum of the SINRhe outage probability is defined as the probability in
which the SINR is below a threshold:

Probloutage] = Prob[y < o] (4.15)

Assuming that the average value of the SINR remains constaleicreasing of the SINR variance will correspond
to a decreasing of the outage probability of the system. fitisis explained qualitatively in figure 4.2. We can see
that for two Probability Density Functions (PDFs) of the 8Nvith same means and different standard deviations,
o1 €02, Whereo, < o4, the PDF with lower standard deviation has lower outage gvdity. Therefore, the function
f(gii.ap) In the equation (4.14) should be chosen so that the variahite GSINR is minimized. In [10], a function
f(gii.ap) was determined which minimizes the variance of the SINR fier ¢ase of two co-channel links. Using
variational analysis, the functiof(g;; 4z) which minimizes the variance of the SINR in dB is a linear fiior:

Di,dB = O - Gii.dB + T (4.16)

wherea andr are constants. The constanheeds to be optimized, whiledepends on parameters of the system as
the cell radio. In [10], it was shown that the optimum vatues %
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Fig. 4.2.A reduction of the SINR variance generates a reduction obthliage probability of the system.

4.4.2 Distributed Balancing Algorithm

Measuring all power gains, in real time, in a cellular systerimpracticable, due to the signaling overheads. There-
fore, a centralized power control is not desirable. Insteeel are interested in algorithms which make the power
control the most independently possible of the power gdiingi@r co-channel links. In a distributed implementation,
the algorithm works only based on measurements of its ovkn Tihe algorithm assumes an iterative rule, unlike the
centralized version, whose solution is given instantaslpance the entire link matrix is known. In [11], Zander pro
posed a distributed version for his centralized algorithrayiously presented in section 4.3. The Zander’s Disteithu
Power Control Algorithm is given by following iterative egfion:

1
pi(k+ 1) =¢&pi(k <1+—> (4.17)
(k+1) (k) Py
where( is a positive constant of proportionality which must be @adequately. This algorithm can be initialized
with any positive vectop(0). This algorithm can be considered a distributed versiorhefdentralized algorithm
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presented in section 4.3, because the SIRs converge torttee\gdue given by the normalized link matrix, repeated
here for convenience:

1
A —1
The power vector converges to a multiple of the eigenveaioespondent ta*. An important problem is that the
powers are all increasing, since that the terms in equadidiY] are positive. For the convergence of the SIRs this is
not a problem, but in practical terms the powers must be keptiimited level. The factof can be used to avoid the

power increasing by adjusting it in each iteratioaccording to:

v = (4.18)

Ek) = T (4.19)

where|p(k)| is the norm of the power vect@i(k).
However, one can notice that the use of equation (4.21) @sgliloss of decentralization, because it would be
necessary to have the signalization of the values of poweadh co-channel link in order to calculdpgk)).

4.4.3 Distributed Power Control Algorithm

Grandhi proposed in [12] an iterative algorithm similar tander’s Distributed Power Control Algorithm, presented
in section 4.4.2. Grandhi’s algorithm can be expressed by:

pi(k)
i (k)
wheree is a positive constant of proportionality. The SIRs alsovewge for the value given by equation (4.18). The

same problem concerning the convergence of the powers exidtcan be solved through the adjustment of the factor
e

pilk+1)=¢ (4.20)

1
) = e R

wheremaz(p(k)) is the largest element of the power vecpik). The adjustment of would also require some
coordination among the co-channel links and thereforegitld not be a completely distributed algorithm.

(4.21)

4.4.4 Autonomous SINR Balancing Algorithm

The algorithms presented so far are only based SIR (nulerasver) and therefore are idealized algorithms. The
Autonomous SINR Balancing Algorithm, proposed in [13] isid@ed to work in the presence of noise. It is originated
from a differential equation, whose interpretation is tlaéabcing of the SINRs in each link:

Yi(t) = =Bl(t) — vl (4.22)

where-, is the target SINRy/(¢) is the derivative ofy;(¢) with respect to time and is a positive proportionality
constant. According to the differential dynamics, the SI&RIves so that the SINR converges to the target SINR by
a proportional amount to the offset between both. Theretbie dynamics cannot stop unleggt) = ;. Different
from the algorithms based on SIR whose resulting balancBdiStependent on the propagation conditions (link
matrix), the Autonomous SINR Balancing Algorithm will mattee SINRs converge to a pre-speciic sincey, is
feasible. This aspect is approached in section 4.5.

Substituting equation (4.3) in equation (4.22), we have:

OO ) - (4.23)

In a distributed implementation, the BS or MS can controlydtd own transmission power;(¢). The interfer-
encel;(t) and the power gaip;(t) cannot be controlled. Therefore, considering only the wmalpvariation of the
transmission power; (t) in equation (4.23), we have:
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igg pi(t) = =Blt) —w] = (4.24)
(0 = =243 Au() =) (4.25)
Transforming the equation (4.25), in a difference equatiemobtain:
_ Li(k) - vi(k) e - Li(k)
pi(k+1) —pi(k) = - ) +4- k) (4.26)

wherep; (k), g:(k), I;(k) and~;(k) are the transmission power, the power gain, the interferand the SINR in the
iterationk, respectively.

Substituting% by pi (k) and% by % and recombining the terms, we have finally the Autonomous
SINR Balancing algorithm: ' L

Yt

pi(k+1)=pi(k) |1 -8+ )

(4.27)

4.4.5 Unconstrained Second-Order Power Control Algorithm

The iterative algorithms proposed so far are classified stsdider algorithms in the sense that they depend on power
levels of the current iteration in order to calculate thetipexver level. In [14], a second-order algorithm was propose
whose advantage is to produce gains in the convergence tpibedarget SINR. Besides the current power, it requires
the previous power level. This algorithm, called Uncoriegd Second-Order Power Control (USOPC), is expressed

by:

m%+UZWﬁ%ﬂ%%H1*Mm®*U, (4.28)
wherew is the relaxation factor which must be chosen appropridietyveen 1 and 2. Of course, in this algorithm
two initial power levels must be selected. In order to do {hi®) can be made arbitrary while; (1) is calculated
doingw = 1 in this iteration. Note that, when = 1, this algorithm is identical to the Autonomous SINR Balamgi
Algorithm with 5 = 1.

In order to improve the convergence, the relaxation fachorlee updated in each iteration. In the simulations of
[14], this new version of USOPC uses a non-stationary réiaxdactor given by:

1
w(k) =1+, (4.29)
Observe that when increasesi (k) tends to 1 and, therefore this algorithm behaves similarlfsatonomous
SINR Balancing Algorithm with3 = 1, along the iterations. Its main objective is to accelerateconverge speed of

the power control.

4.4.6 Up-Down Algorithm

A very simple power control algorithm is the up-down alglomitalso known as the fixed-step power control algorithm.
At each iteration, this algorithm adjusts the transmittedi@r upwards or downwards by one step or keeps the power
constant. The choice of this action is done based on the aisopebetween the actual SINR and a target SHNR
The algorithm will attempt to reach a target SINR Mathematically we can describe the algorithm in decib8l)(d
scale as:

pi(k)+¢6 [dB] if vi <y —9;
pilk+1)=< pi(k) =9 [dB] if v > v + 6; (4.30)
pi(k) [dB] otherwise

It can be shown that the algorithm converges once it existeagilfle solution. Practical systems such as
UMTS/WCDMA (Universal Mobile Telecommunication Systeniiéband Code Division Multiple Access) use this
algorithm withé = 1 dB [15].
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4.5 Feasibility and Convergence Aspects

In this section, we choose the Autonomous SINR Balancingp@lgm in order to explain some aspects concerning
feasibility and convergence of the distributed power aaintr

By using the Autonomous SINR Balancing Algorithm, two qimss arise. The Autonomous SINR Balancing
Algorithm will get to balance the system for any target SINR Which value ofg yields a higher convergence
speed?

It is possible to show that the convergence speed is maximiben = 1 [13]. Therefore, substituting = 1 in
equation (4.27), the Autonomous SINR Balancing Algorithecdimes:

Pt
plk+1)=pk) —= (4.31)
(k+1) = p(k) - 15
Let us demonstrate the optimality 8f= 1 and to establish criteria of feasibility of the power cohfoo the case of
two co-channel links, as shown in figure 4.3. The directiooarhmunication is the reverse link, but the demonstration
for the forward link is analogous.

BS BSo

1
‘ g22
g1
g1z g21
MSl MSQ

Fig. 4.3.Model for two co-channel links.

Firstly, let us establish a necessary and sufficient candiid check if a given target SINR is feasible. A target
SINR v, is feasible when the equation system has a positive solirtitire variable®; andp,:

P P
vy = gi1 - P1 _ 922 - P2 (4.32)
g21-p2+V1  gi2-p1+ V2
Putting the equation system in a matrix format, we have

B-p=n (4.33)

R4
n= |:7t5{,121:| .

922

Solving the equation system (4.33), we have:

o= Pt . (V1922 + V2%921) (4.34)
1 — (y0) 911922
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(4.35)

Pt <V2911 + V1%g12)
p1 =

1 —(v0)? 911922

1/2
whereg = ( 12921
gi11922

Therefore, the system will have positive solution wisesm < 1. Note thatr is the absolute value of the eigenvalue
of higher absolute value of the matx= %(I —B), wherel is the identity matrix. This criterion of feasibility of the
target SINR is also valid t™ co-channel links [16].

Once the criterion,o < 1 is satisfied, let us prove that doipg= 1 in the equation (4.27), the convergence speed
is maximized. Writing the equation (4.27) in the matrix fonuwe obtain:

p(k+1)=D-p(k) + On (4.36)

whereD = (I — §B).
Therefore, along the iterations, we have:

p(k) = (I + D+ D?* + ... + D" 2)pn + D*~!p(1) (4.37)

If the absolute values of all eigenvaluesvare lower than 1, the seri¢s+ D + D? + ... + D*~2) will converge.
The lower the absolute value of the highest absolute valgenealue, the higher it will be the convergence speed.
Moreover, the series will converge tb— D) ! [17]. Therefore, the optimum value gfis the one which minimizes
the absolute value of the eigenvalue with highest absohlteewof the matriXD. Thus, once the absolute value of each
eigenvalue oD are strictly lower than 1, we can affirm that:

Jim p(k)=(-D)"'Bn=(pB) " 'pn =B 'n=p (4.38)

According to equation (4.38), the powers will converge te #alues given by the solution of matrix equation
(4.33), therefore the SINR will be balanced.

The eigenvalues of the matrR for the case of two co-channel links arg; = (1 — §) + [y and Ay =
(1 — ) — v fBo. Therefore, the choice ¢f which yields in a fastest convergencedis= 1. Observe that this value of
B makes\i| = |A\2| = 1o < 1. This can be seen in the figure 4.4.
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lllustrative Example

The following figures show illustrative examples of the f@gsibility of the target SINR using the Autonomous SINR
Balancing Algorithm withs = 1 for the case of two co-channel links. From equations (4.@13) and (4.4) it is easy
to see that each transmitter will control its own power adiogy to the equations:

pk+1) =292 )+ N (4.39)
g11 g11

palk +1) = T2 p (k) 4 L2 (4.40)
g22 g22

Equations (4.39) and (4.40) represent two lines and thet&tNR~; will be feasible if both itself cross in the
first quadrant. This will happen wheno < 1. In this case, the power control algorithm will get to balatitze SINRs.
This scenario can be seen in figure 5(a).

A

Pr | paet 1) = () 4 2

gi1 gi1

pa(k +1) = 142 . p) (k) + 222

922

Convergence point

2 pi(k) + 122 Pi(k +1) = 1220 . py(k) + 2

911

- >
p1 p1

(a) Feasible Target SINR. (b) Non feasible target SINR.

Fig. 4.5.Scenarios of feasibility of the target SINR.

Observing equations (4.39) and (4.40), we can see that thdarcoefficients of the lines are influenced by three
factors:

1. The target SINRy;
2. The power gaifg;; of the signal;
3. The power gairg;; of interfering signal.

Three situations make the angular coefficient of the lineseiase, making the crossing point of figure 5(a) occur in
higher powers: the target SINR is increased or the power gajr of the signal is decreased or the power gginof
interfering signal is increased. The crossing of the lingghtmot even happen in the first quadrant. This situation can
be seen in figure 5(b). This scenario happens when the ontgfr < 1 is not satisfied. In this case of infeasibility
the powers would increase indefinitely and even so the poamral algorithm would not balance the SINRs to the
value~;.

4.6 Semi-distributed Power Control Algorithms

The algorithm presented in section 4.4.5 has the advantagereasing the convergence speed of the algorithm.
Another way of doing this is to employ semi-distributed altfoms. In [18], it was proposed a new semi-distributed
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power control algorithm. This algorithm is based on the agstion that some limited control data communication
between the co-channel bases is allowed. The algorithmmig-distributed in the sense that it is run by each base
station based on its local information and information dgnsome of its neighbor bases. Of course, such information
exchanges generate some overhead. However, the tradetétithe new algorithm does not have any normalizing
factor, as in the power control algorithms presented ini@est4.4.2 and 4.4.3 and then, no global communication is
needed. Moreover, it has a nice convergence property iretieeshat the minimum of the signal-to-interference ratios
of all the interfering receivers converge monotonicallyvapd to a limit.

Before the application of the algorithm, it is necessaryafiree the concept of network neighborhood. The network
neighborhood is defined through a control data flow struottiieh is represented as a directed graph. This directed
graph defines a static network topology where the base statire represented by the nodes and the existence of a
directed edge from base A to base B indicates that contral ¢kt be passed from A to B. A directed edge can be
implemented in the practice by a microwave link or an optibsrficable. Of course, there is a cost associated with
this communication among the bases and it is desirable tomza the cost by decreasing the number of edges of the
structure.

Once that the control data flow structure is defined, the @lgorcan actuate according to the following rule:

pi(k + 1) = ni(k)pi(k), (4.41)

with
Di (0> = Pmax (442)

and
(k) = (/mm(%(k),maxs,T]z;leNﬁj(k),%))' (4.43)

whereN; is the set of indices of base stations that send control dé&annation to base statiohaccording to the

control data flow structurey is the minimum SIR ratio for transmission with acceptablaliy, p,,... is the maximum

transmission power level angdis a parameter of the algorithm that control the rate of coysece. Note that the
communication between the bases is made through of the@eaf), .

Concerning to the convergence properties, [18] statestligafinal SIRs depends on the maximum achievable
SIR~*, which is given by equation (4.18).4f* > ~q, then the algorithm converges to the balanced solutionjsha
~v; = ~* for all base stations. H* < ~, then~; < ~q for all base stations, with the strict inequality holding &
least one base station. Moreover, if the initial SIR of #iiebase station is larger than or equahtg then~; = ~o.

In [19], a variation of this algorithm is presented. This nesvsion consists of the power of each link starts from
the minimum allowed power and is adjusted monotonically aalv This modification has two advantages. First, it
saves user battery life. Second, the admission of a new us@nines any sudden increase in the interference to the
existing users. The disturbance to a balanced system isrttmisized.

4.7 Techniques of Transmitter Removal

When the system becomes congested or the propagationiomsdire unfavorable, the probability of an infeasible
power control solution increases. An infeasible power @rgolution occurs when the balanced SIR is lower than
a minimum SIRy, for transmission with acceptable quality. A countermeadar dealing with infeasible situations
is to remove links from the set of co-channel links. Remowekisl may be handed off to other channels and in an
extreme case dropped.

4.7.1 Stepwise Removal Algorithm

In [8] it was proposed a simple procedure, called the Step®Rismoval Algorithm (SRA), for practical implementa-
tions. The SRA algorithm, one by one, removes links untilrédguired SIR is achieved in the remaining links. This
method has the advantage of requiring substantially lowpzdational effort. SRA consists of two steps:

Step 1 Determine the feasible maximum StR from link matrix Z given by equation (4.18). §* > ~, (power
control is feasible), utilize the eigenvector corresparide the eigenvalug* (theorem 1) as power vector and stop.
If v* < ~9 (power control is infeasible), execute step 2.

Step 2 Remove the linkt for which the sum of its row and column in the link mat#x
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M
Z Zyi + Zig, (4.44)
i=1

is maximized and thus forming a new square sub-mattiwith dimension(M — 1). Determine the new* corre-
sponding toZ’. If v* > ~y (power control is feasible), utilize the correspondingegigector as power vector, else
repeat step 2 unti}* becomes larger thamp,.

Although one may think the link removal scheme is an extrerag t@ improve the performance of the system,
we should remember that those links which do not reaclare useless while causing interference to other links.
Therefore, the removal of a bad link is an effective strategy

4.7.2 Stepwise Maximum Interference Removal Algorithm

In [20], it was proposed an algorithm which outperforms tRAS This algorithm was called Stepwise Maximum-
Interference Removal Algorithm (SMIRA). Different from 8RSMIRA considers transmitting power to be an impor-
tant factor in removing links, in addition to power gains loéink matrix. The idea is that the larger the transmitting
power, the greater the interference it causes to MSs in tier oells. Therefore, if a link which uses a high transmigtin
power is removed, then it is likely that the remaining linkm@chieve the minimum acceptable SiR The SMIRA

is composed of two steps:

Step 1 Step 1 is identical to step 1 from SRA, which is determinihg feasible maximum SIR* from link
matrix Z given by equation (4.18). §* > ~, (power control is feasible), utilize the eigenvector cependent to the
eigenvalue\* (theorem 1) as power vector and stopyif< ~o (power control is infeasible), execute step 2.

Step 2 Calculate:

M

Y= Zups (4.45)
i#k
M

Iff = Z Zikpi (4.46)
ik

I = max (I}, I} (4.47)

and remove the link for which ;%" is maximum. The powerg;, are the elements of eigenvector correspondent to
the eigenvalue\* of the link matrixZ. With this new link matrixZ’, determine the new*. If v* > ~¢, then use the
corresponding eigenvector and stop; otherwise repeaPstep

Observe that the term “maximum interference” is used bexafisepresents the total interference caused by the
mobile in cellk to other cells and}® represents the total received interference in theicetiginated from other cells.

In terms of numeric complexity, the SMIRA algorithm requiraore multiplications than the SRA algorithm each time
a cell is removed. However, the computational complexigdminated by finding the eigenvalue and eigenvector of
the link matrix and thus these additional multiplications aegligible.

SMIRA has two variations: Stepwise Maximum Received Irgerhce Removal Algorithm (SMRIRA) and Step-
wise Maximum Transmitted Interference Removal AlgoritiTIRA). The difference from SMIRA procedure is
the fact that the former considef&+* = [, while the second considef§®* = I[.

Simulation results in [20] shows that SMIRA presents the pesformance. The performances of SMRIRA and
SMTIRA are similar and are better than SRA. However, SMITIRAy become worse than the SRA for high values

of 7.

4.8 Techniques of SINR-target decreasing

Another direction for dealing with infeasible situatiossd decrease the target SINR. In [21], instead of considerin
a fixed value to target SINR, a variable one is used. The Meari@bget SINR of each transmitter depends on its
transmitted power. The idea is that the more transmittedepdsvnecessary to obtain a target SINR, the worse the
propagation condition of this link is. As a consequences, til@nsmitter will be causing excessive interference temwth
co-channel links. Therefore, a good solution would be tarekse the target SINR of this link. On the other hand,
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users who utilize little power to obtain its target SINR haeaditions of reaching a higher value. With this in mind,
[21] proposed the following equation (in dB) for the adjustmhof the target SINR:

vk+1)=m-pi(k+1)+n [dB], (4.48)

wherem is a negative constant andis a control parameter, both in linear scale. Considerirly tive effect of the
power adjustment between two consecutive iterations, we:ha

Yi(k + 1) =i (k) — pi(k) + pi(k + 1) [dB], (4.49)
Substituting equation (4.48) in equation (4.49) yields in:

m - pi(k+1) +n = (k) — pi(k) + pi(k +1) [dB], (4.50)

Rewriting equation 4.50, the strategy of power control Wélgiven by the following algorithm:

n +pi(k) — (k)

pi(k+1) = iom [dBm], (4.51)
or
pik+1) = ¢ — o(vi(k) — pi(k)) [dBm], (4.52)
where
o=1— ilm and @z—l_lm, (4.53)

The parametep controls the mean value of the transmitted power distrilouéind, controls the system’s spread
in transmitted power and SINR. In [21], it was shown throuighusation that the optimum value fas is around 0.7,
in terms of10¢h percentile of the SINR.

In [22], a similar power-to-target SINR mapping is proposecluding inferior and superior bounds of target
SINR and a restriction of maximum transmitted power. Figuillustrates this scheme. Fpr < p;, the transmitter
i attempts to keep a high quality connection by aiming for treximum target SINRy;. Forp;, < pi < Pmaz, the
transmitteri aims for a minimum targey;. Observe thay, > ~; > 7o, wherey, is the minimum acceptable threshold.
Forp; < p; < ;, the transmittef aims for a target SINR that is given by a linear functiompin dB. Note that the
poirWs(&, 7:) and(p;, ;) determine uniquely this linear function.

¥ (pi)[dB]
A

Yo

Fig. 4.6.Mapping of the target SINR.



96 Oliveira Netcet al
4.9 Practical aspects of power control

4.9.1 Constrained Power Control Algorithms

So far, the presented algorithms can transmit without pdiwétation. However, this assumption is not realistic,cgn
the maximum power of a transmitter is upper-bounded for @mp@ntation purposes. For the mobile stations, this
limitation is crucial, because the battery energy is scaviceeover, the introduction of limits for the maximum power
level restricts the impact that a single non-supportediialy have over the other co-channellinks. In order to comside
this power limitation, [12] and [23] introduced a consttdinthe algorithms given by:

0 S DPi S Pmazx, (454)

wherep,,... is the allowed maximum transmission power. Therefore gfttansmission power calculated by a power
control algorithm is greater than,,..., the algorithm truncates the power transmissiop,jfa... A transmitter which
suffers this limitation will not reach its target SINR, bhig best-effort solution is better than holding a non-surfgab
link which would cause all other link powers to increase firdeely.

4.9.2 Power Control over a Discrete Power Domain

Most studies about power control assume a continuous raiigansmit power levels. In practice, however, power
levels are assigned from a discrete set. The convergencesifpower control algorithms depends on power levels
that can be controlled in a continuous domain and so the ingfatiscretization needs to be analyzed.

In [24] a simple method is proposed taking the “ceiling” \alf the power given by the continuous algorithm.
For a power value;, let the ceiling valudz| be the smallest value in the discrete set of power valueshwihitarger
than or equals.

For an algorithm based on received power like signal-l®ased power control in section 4.4.1 is obvious that a
higher transmit power will result in higher received pow&us. using ceiling value is a straightforward solution.

For algorithms based on a target SIR, theorem 3.1 and 3.2igi2nts that ifd < p(0) < p*, wherep* is the
optimal discrete power vector, theiik) converges t@*.

In [24] it is stated that the ceiling approach may result iraaillating SIR, which results in a poorer link quality
and in a higher outage probability. To mitigate this prohl§5] proposes a solution that alleviate the oscillatioh bu
has a lower rate of convergence. We exploit this solutiohértext paragraphs.

Consider thap; (k) is the current discrete-domain transmission power for tbeita: and thatp;(k + 1) is the
power determined by the continuous algorithm for the nemtqraupdate interval.

The algorithm in [25] is defined as

1) = { P D) f pf (b 1) > pi(h)
‘ [api(k) + (1 — a)pj(k +1)] if pj(k+1) < pi(k)
By analyzing (4.55) we conclude that the algorithm redubesspeed of the adjustment of power when the power
is increasing and permits the adjustment at full speed whempower is decreasing. That way, with a propethe
oscillation is reduced with little impact on the convergen€ the algorithm.

(4.55)

4.9.3 Impact of Time Delays in Power Control

Closed-loop power control is the key to compensate the Manigin power gains and multiple access interference.
The current state of the channel, characterized by measmtsr(SIR, Received power, etc), is used by the algorithm
to determine the transmit power in the next power controlwamd.

It is common to control each link individually based only aeédl information. An outer loop provides an inner
loop with a target value and the inner loop determines trésson powers or issues transmission power control
commands to meet this target.

The issued power control commands use the measureméhj together with corresponding target value¥ k)
from an outer loop in the control mechanid®y to issue power control commandgk). These commands are sent
over the radio interface. The control commands are decogelebdeviceD; on the transmitter side into updated
transmission powens; (k + 1).

si(k) = Ri{mj(k), mi(k)} (4.56)
pi(k +1) = Di{si(k)} (4.57)
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Assuming that the measuremeni(k) is a function ofp; (k) given by

me(k) = pi(k) + Bi(k) [dB], (4.58)

This works well under ideal assumptions, but in real sitwreaj time delays in the control loops reduce the per-
formance. These delays are typically round-trip delay$@itiner loop. As concluded in [26], the delays result in
oscillating and possibly unstable systems.

The time delay compensation (TDC) proposed in [26] can bd tseompensate for the delays. This technique
can be used together with a wide range of power control dlgns. The main idea of this algorithm is consider issued
commands that have not yet taken effect together with theotimeasurements.

Assume that issued powers or power control commands argatklyn, samples before they take effect and a
measurement is used in the control algorithynsamples after it is collected (for example, if the measurgnsesent
over the radio interface). The power control algorithmlftsecludes a processing delay of one sample. In total, the
round-trip delay is thus,, + n,, + 1 power update intervals. The measurement delgyis normally short and can
be seen as part of the control algorithm processing delay

The actual measurement will be

mi(k) = pi(k —np) + B:(k)  [dB). (4.59)

However, to compensate the delay in the issued commande algbrithm we will need the measurement when
the power will be in fact useth; (k + n,). Using (4.59) we arrive to

m;(k+ny) —mi(k) = pi(k) — pi(k — np) + Bi(k — np) — Bi(k) [dB]. (4.60)
that considering; (k — n,) = 0;(k) takes to the simple estimative

mi(k+np) = mi(k) + pi(k) — pi(k —np — n). (4.61)

In practicep; (k) is not available and the devid®; must be considered to determingk).
Applying the TDC to the autonomous SINR balancing algorithreection 4.4.4, for an example, with, = 1 we
get

Yilk +1) = vi(k) + pi(k) — pi(k — 1) (4.62)
pi(k +1) = pi(k) + (7 (k) = 7i(k +1)). (4.63)

4.10 Power Control in WCDMA

The power control in WCDMA is based on a paradigm of three $o@pen loop, Closed loop and Outer loop. These
three loops work jointly to determine the transmission powe

The open loop determine the initial transmission power. Jio@ose of this loop is compensate for the shadowing
in the first transmission. The propose of the closed loopmspEnsate for the fast fading. Measurements of SINR are
made in the receiver and compared with a target value. Afterdomparison a command to increase or decrease the
power is sent to the transmitter. This loop is capable tdtthe fast fading because of its high frequency.

The outer loop role is to compensate for errors in SINR meamsants and changes in the mobility profile of the
mobiles. It adjusts the target SINR of the closed loop baset@asurements of the transmission errors.

The Fig. 4.7 illustrates the operation of the three loops.

4.11 Power Control for Multirate Systems

Modern communication systems provide different servicék different transmission rates and error requirements.
The transmission rate is closely related to SINR, and thé=SIban be efficiently controlled by power control. There-
fore, the combined rate and power control is an interestiodplpm that is highlighted when multiple services are
offered with different transmission rates.

Consider that the rate (¢) is limited by
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I

Open loop
Allocate the igitial
power based on
estimative of the

power gain.

Outer loop
Updates the target
SINR based on error ~ Closed loop
measurements Adjusts the power with
UP/DOWN commands
RNS BS comparing the SINR

with the target SINR

Fig. 4.7.Operation of the three WCDMA power control loops.

ri(t) < f(7(1)) (4.64)

where f is a monotonically increasing function. If we use the Shamimoit, for example, the relation between
rate and SINR becomes

f(7) = clog(1+1) (4.65)
We will assume that the transmit power is limited and the mmaxn transmit power is given by thge =
(ﬁlvﬁ% te 7ﬁN)
Define a rate vectar(p) = (r1, 72, ...,7y) a@s instantaneously achievable if there is a positive poeetov
p=(p1,p2,...,PN) <P (4.66)
such that
ri < f(vi(p)), Vi (4.67)
Define a rate vectar*(p) = (r1,r3, ..., %) as achievable in the average sense if it may be expressed as
r* = Zakrk (468)
k
where
ape(0,1], ap =1 (4.69)
k

where allr, are instantaneously achievable rate vectors.
Assume that each link requires a minimum data rate, denoted,;,. Then assume that each user desires to
achieve the maximum possible data rate. Then, if the seisidelay-insensitive, we can consider the optimization

problem

N
maerf(ﬁ) (4.70)
i=1
subject to

Using (4.71) and (4.67) we arrive to a region of instantaseathievable rate that, with (4.68), can be used to
obtain the region of average achievable rate.

If a set of rate vectory, is instantaneously achievable, it is possible to switckvbeh rate vector, using each of
them during the fraction of time;, and yielding the average raté&(p) = (i, 3, ..., r%y). This is important because
sometimes the instantaneous achievable rate region ioneex but the average achievable rate region always is.

In[27]itis defined a class of algorithms called opportuniatgorithms. This class of algorithm uses the variability
of the power gains to increase the system capacity incrgésatransmission rate for links with high gains.

It proposes a power update using an iterative function

p(k+1) = I(p(k)) (4.72)
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wherel(p) = (I1(p), L2(p), .- -, In(p))-
It defines that/ (p) is two-sided scalabld

(2)p<r<ar = ()10 <16)<art) va>1 (4.73)

The theorems that follows shows the advantage of the usenad-aitled scalable iterative function.
Theorem 2.1f I(p) is two-sided scalable and a fixed point exists, then that faek is unique.
Proof. Refer to [27]
Theorem 3.1f I(p) is two-sided scalable and a fixed popritexists, then the power vectp(t) converges te*.
Proof. Refer to [27]

Theorem 4.Given a two-sided scalable iterative functidp) , if there existsl, « > 0 such that < I(p) < « for all
p, then a fixed point exists.

Proof. Refer to [27]

In some services, simply maximizing the aggregate rateiikd.70) is not sufficient to achieve the QoS require-
ments. Other requirements like maximum delay must be takersiccount to maintain the users satisfaction.

4.12 Power Control Games

Wireless communications may be generally characterizedutiiple communication nodes and a limited amount of
radio resources, which must be shared among the nodes. én tordssure Quality of Service (QoS) requirements,
power control techniques are used. Moreover, power coistedsential concerning the energy efficiency, since com-
munications nodes using low power levels means longeinifebdf batteries for mobile terminals and more energy
resources available for central nodes as base stationfuitacsystems.

Distributed or decentralized power control is of speciaitast and importance, since it allows the use of only
local information for determining a suitable transmit poj3, 21]. The decentralized power control problem may be
characterized as a competition between the communicatideash The power resources must be efficiently allocated
by self-optimization, since the transmit powers of all n@dan not be jointly determined by a central controller. This
indicates the adequacy of the application of noncooperatime theory concepts to the problem.

Game theory is a mathematical tool for analyzing the intewamf decision makers with conflicting objectives
and for the formulation of decision strategies. The po&tiati game-theoretical concepts began to be explored in the
distributed power control problem recently, as discussg@8]. CDMA-like cellular systems, where power control
has a critical role, have been the preferred environmentuafiess, with the focus mostly in best effort (or elastic)
services.

4.12.1 NoncooperativaV-Person Games

A game has three basic elements: a set of players, a set dblgoastions for each player, and a set of objective
functions mapping action profiles into real numbers. Gamieiglwinvolve N players are calledv-Person Games.
When the players are not allowed to negotiate, i.e., they havmake decisions based only on their own objective
and information, it is configured a noncooperative gameallst discussions about game theory can be found in
[29, 30, 31].

In distributed power control games, a general model may bd tesrepresent the wireless system as @xef N
radio links (transmitter/receiver pairs), = {1, ..., N}, where each link is affected by interference caused by hé#rot
links. In this model, the transmitters constitute the sqilajers and each playgrj € 2, has as decision variable its
own transmit powep;.

Actions or decisions of players are confined to their styatgace, the set of feasible transmit power levgls=
[P min: Pimas)- 1T 1S Usually adopted a unique set of feasible transmit pdareall players:P; = [poin, Pmaz]-

Power gain seen by thjth receiver is represented gy, while the correspondent interference-plus-noise posver i
I;. Then, Signal-to-Interference-plus-Noise Ratio (SINBjqeived byjth receiver;y;, is given by:
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Digi
v = }_fb, (4.74)
J
wherel; is defined as:
N
L= [mg) + 0% 1 # ], (4.75)
=1

with o2 as the average AWGN power.

The objective of each player in the optimization processjsesented by its objective function, which is a function
of all the decision variables, i.e., it depends on transimitgrs of all players.

The decentralized power control game is naturally noncripe, since each player makes rational decisions
aiming the optimization of its objective function basedyoah local information. Therefore, distributed power cohtr
games are classified as noncooperadvperson games.

4.12.2 Objective Functions: Utility, Pricing and Cost

The objective function is a special element in a game, sinoaust represent the player interest with respect to the
optimization process to be carried out. Objective functioan be classified as cost functions or utility functionse Th
concept of cost function refers to the expense or loss oflthgepas a result of its actions. Utility functions are reéer

to revenue or gain measures of players instead of theirdossmther modeling of losses or expenses is called pricing.
The pricing works as a penalty associated to the decisiorergthe player. Power control algorithms in the literature
differ essentially on the objective functions.

In wireless communications, objective functions are dipselated to QoS. Two QoS requirements are low delay
and low probability of error. QoS guaranteed services anallsassociated to hard delay requirements and consider-
able tolerance with respect to transmission errors. Thisdscase of voice services. By contrast, some data services
can accept some delay but are very low tolerant to errord Services are classified as best effort or elastic services.
Different objective functions may be constructed for bgihets of services.

QoS Guaranteed Services

The establishment of a minimum SINR corresponds to a stegtibmof the SINR as utility function [32, 33]. The
system is considered unacceptable when the SiN&Rbelow a target levelt. When SINR is above the target level,
the utility or satisfaction: is constant, as shown in Fig. 4.8. Then, it is implicitly assdl that there is no benefit to
having SINR above the target level. This is an adequate niod€loS guaranteed services, as demonstrated for voice
traffic in [34, 35], where a downlink resource (code and pw#ocation problem is considered in CDMA systems.

Objective functions which represent satisfaction can belifieal by including a penalty in order to avoid the
unrestricted use of resources. Pricing schemes provide efficient solutions for the power control game. In [34, 35],
each player is penalized linearly with its transmit powdrtefi, playerj with transmit powep; has as total charge
for servicea, + «,p;, wherea, is the price per code and, is the price per unit transmitted power. In this case,
the objective function to be maximized is defined as thetyt{tep function) minus the charge for service. This
optimization process provides two possible outcomes th @aryer: it remains inactive (no transmission) or uses
exactly enough power to achieve the target SHNR

Another suitable objective function for QoS guaranteetises is explored in [36], in the form of a cost function
of the SINR. There, SINR values far from the target SiINRare discouraged, as shown in Fig. 4.9. The minimization
of the cost function (4.76), defined as the squared errordrivitarget and achieved SINRs,

¢ = (i =), (4.76)

accomplishes the tracking o/tj and provides a new demonstration of the Autonomous SINRrBalg Algorithm
[13].

Best Effort Services

Distributed power control algorithms for best effort sees have been extensively studied in the context of noncoop-
erative games [28, 32, 33, 37, 38, 39, 40, 41, 42, 43, 44, A5hdst frameworks, utilities and pricing schemes are
adopted as QoS metrics. Pricing is always associated torpmmsumption, while a variety of approaches is used to
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Fig. 4.8.Quality of service metric for QoS guaranteed services mpred as a utility function.
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Fig. 4.9.Quality of service metric for QoS guaranteed services sed as a cost function.

represent some objectives as utilities. The most commogctbgs are: maximization of total (system) throughput
and maximization of energy efficiency.

In [37], a jointly uplink power and spreading gain controbplem is considered for CDMA cellular systems. An
instantaneous throughput for each transmitter is usediléyg function. A global optimal solution which maximizes
the aggregate throughput is obtained. However, it is nosicemed any constraint on the spreading gain.

In [38], a framework for uplink power control in cellular $gsns is proposed to obtain better QoS using less power.
The objective function is a concave decreasing functiorogfgr and a concave increasing function of SINR.

Utility-based algorithms with pricing, that is, algoritlsnwvhich use net utilities are developed in order to improve
energy efficiency [32, 33, 39, 40, 41, 42, 43]. Pricing is a ptonic increasing function with transmitted power. A net
utility is composed by the difference between utility anitimg, as illustrated in Figure 4.10.

Uplink power control is developed to provide power-efficizansmission in [32, 33, 39, 40]. The utility function
is related to the number of effective bits transmitted pdt ahenergy in a wireless data system which transmits
packets containind. information bits. With channel coding, the total size of leg@acket isM > L bits and the
transmission rate i bits/s. The utility function for each playgrs given below in bits/Joule:

LRf(v;) (4.77)

J ij ’
wheref(~,) is called efficiency function and represents the probatslitcorrect reception as a function of the SINR

E
Once the efficiency function is defined as showed in equa#iof], with BE R; denoting the binary error rate of
transmitter/receiver pajt, the adopted utility function includes details of systemvéo layers, as coding and modula-

tion.
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Fig. 4.10.Utility, pricing, and net utility.

f(v;) = (1 - 2BER;)M. (4.78)

Such dependence on system parameters may restrict theyanguibof algorithms to some system configurations, as
in [32, 33, 39, 40] for noncoherent frequency shift keyin@ K modulation.

High transmit power levels as result of the utility maxintina motivate the search for techniques to encourage
players to transmit at lower power. An improved power cartem be carried out by imposing a price on each trans-
mission. The pricing scheme used in [32, 33, 39, 40] is a tifwaction of powerp,p;, wherea,, > 0 is the pricing
factor. Then, the net utility is given by:

LRf(v))
Uj = ———2 — q,p;. (4.79)
J ij prj
Other objective functions not dependent on system parase®re addressed in some works, as in [42, 41, 43].
The authors of [41] make use of the Shannon’s capacity rul&MGN channels as utility function, which corresponds
to treating all interference as noise. Thus, the net utilitgach playey is:

uj = Blogy(1+7;) — app;, (4.80)

whereB denotes the channel bandwidth in Hz.

In [42] the utility function corresponds to the effectivedhighput. In this work, a pricing scheme different from
the pricing per unit transmit power is adopted: the pricieg pnit normalized transmit power is used (normalized by
total interference). Thus, the impact made by player in @Veérterference is more accurately measured.

The utility considered in [43] for the uplink problem is aigid function of SINR. The net utility with a linear
pricing is expressed in equation (4.81):

1

Parametera andg in the sigmoid utility can be used to tune the steepness ancethter of the utility, respectively.
Cost functions are also used as objective functions fordféstt services. As in [36] for QoS guaranteed services,
the cost function is defined as the squared error betweeettang achieved SINRs in [46, 45]:

= (v —)". (4.82)

However, for best effort services the target SINR is defirmdefich player in an opportunistic manner as a function
of the transmit power required to achieve it: players whoethegate the performance of other players by using high
power levels are designated to target low SINR levels. |a #piproach, restrictions (upper and lower bounds) on
transmit power and QoS (SINR) requirements are considered.

Each mapping function of transmit power into target SINRhwgitich opportunistic behavior provides a particular
distributed power control algorithm [46, 45]. In [46], theeget SINR is linear (in logarithmic scale) with the transmi
power required to reach it, as shown in Figure 4.6. The mapipinction is then expressed as:
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wherea andg are tunable parameters defined as functions of the uppeoad bounds of power and target SINR.
The target SINR mapping considered in [45] is a sigmoid fiomodf the transmit power.

Another cost function is studied in [47]. There, the costchion to be minimized is composed by the cost of the
difference between target and achieved SINRs and the ctis¢ glower consumption, as shown below in (4.84):

2
ci=ap;+6 (v =), (4.84)

wherea and/3 are constant nonnegative weighting factors.

A third approach to the power control problem with the use adtdunctions is suggested in [48]. There, each
playerj uses a cost function which is linear in power and depender8IbiR in logarithmic scale, as defined in
equation (4.85):

¢c; = apj — Blog,(1+7;), (4.85)
wherea andg are the cost weights.

Multi-Service

The frameworks of noncooperative power control games dé&sentially on the objective functions. Some of the
objective functions adopted in the literature for both Qo8 hest effort (or elastic) services were presented. Each
commented objective function is addressed to the singldesgpower control problem, i.e., they are suitable for QoS
guaranteed services or for best effort services, excllysive

In [44], a general framework based on the approach adopted]rior best effort services encloses both types of
service. The cost function is the squared error betweeptargl achieved SINRs (4.83) and the target SINR mapping
function is also that illustrated in Figure 4.6. Howeveisittemonstrated that for a unique target SINR, i.e., for uppe
and lower bounds of target SINR assuming the same value, dnee& heoretical Distributed Power Control (GT-
DPC) algorithm, proposed for best effort services, becothesAutonomous SINR Balancing Algorithm [13, 36],
adequate for QoS guaranteed services.

Therefore, the GT-DPC algorithm, derived from a framewoithvpower restrictions, where upper and lower
bounds for QoS (SINR) requirements are also consideredlésta be used for best effort services only, for QoS
guaranteed services only, so as for the mixed (or multilseyscenario.

4.12.3 Nash Equilibrium Solutions

The transmit power that optimizes individual cost functé@pends on the transmit powers of all other transmitters
(players). Therefore, it is necessary to determine a sedwéps where each player is satisfied with its gain or with the
cost that it has to pay, given the power selections of othergrk. Such an operating point is called equilibrium point.
All commented noncooperative power control games wereessdeéd in the point of view of the Nash equilibrium
solution.

The Nash equilibrium solution (or Nash equilibrium poirg)dne of the most celebrated equilibrium solutions
[30, 49]. Nash equilibrium (NE) concepts offer predictadhel stable outcomes of a game where multiple agents with
conflicting interests compete through self-optimizatiod aeach a point where no player wishes to deviate from.

Considering the problem of minimizing a cost function, a powectomp* = [p7, ..., p%/| is a NE point of a power
control game if, for eaclj € {2 it holds:

¢j (p5,0%;) < ¢ (pj,P%5) (4.86)

wherep” ; denotes the vector consisting of the elementpobther than thgth element. Therefore, each player is
discouraged to unilaterally adopt strategies differeabfithat defined by the NE solution, since its cost would be
increased (or equivalently, in the case of utility maxintiza its satisfaction would be diminished).
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4.13 Prediction for Improvements of Power Control

The employment of a power control technique in wireless netis not trivial, since this is a multipath environment,
where fast (or short-term) fading occurs. The SINR perakinereceivers depends on power gain and interference,
which are influenced by fast fading. Fast fading is the phesrmn that describes the rapid amplitude fluctuations of
aradio signal over a short period of time or travel distafi¢tese rapid fluctuations cause degradation in the action of
power control.

Most formulations of the power control problem do not coesithe time-varying nature of power gain and inter-
ference. It is usually supposed that between two power cbattuations the power gain and the interference may be
considered invariant. However, some studies have beenageckto the employment of prediction techniques in the
power control problem.

4.13.1 Taylor’'s Series

In[50, 51, 36], a new distributed power control algorithrpiesented. It differs from the Autonomous SINR Balancing
Algorithm [13] in that its deduction assumes both power gaid interference to be time-varying functions and it
predicts this variations through the Taylor’s Series.

The expansion of a generic continuous functipin Taylor's Series with the negligence of high order terms,
followed by the transformation into a difference equationduces the prediction expressed below:

fk+1)=2-f(k) = f(k—1), (4.87)

wherek denotes the discrete-time index.

Then, equation (4.87) is used to predict power gain andferemce. The simple prediction method based on
Taylor’s Series is responsible for a significant perforneegain of the proposed algorithm over the DPC.

In [36], the DPC algorithm is shown to correspond to a poorayipation of the Nash Equilibrium (NE) solution
of a noncooperative power control game. The use of Tayl@rsS for prediction of power gain and interference pro-
duces a better NE solution approximation. The proposedithgooutperforms the DPC with respect to the guarantee
of a minimum QoS, as shown in Figure 4.11 for a CDMA system érgverse link.
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Fig. 4.11.Average fraction of time in which SINR is 1 dB below the tar§¢tR for DPC and Taylor's Series based algorithm in a
CDMA system.

4.13.2 LMS and RLS Algorithms

Predictive schemes based on both recursive-least squrRlr&3 &nd least-mean-squares (LMS) algorithms have been
investigated in the context of the power control problemvigdeless networks [52, 53, 54]. Current and past samples
of the received power are used as input of adaptive filtersiwhave their tap-coefficients updated by the LMS or the
RLS algorithm. Future received power is then predictedpating to the expression below:
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M-1
plk+1) = > wi(k)p(k — i), (4.88)

=

wherep(k+ 1) is the predicted received power at time instgnt- 1) and the filter is composed by tap-coefficients.
The power control command decision is subsequently madedbas the predicted power instead of the current
estimate of the received power.

In [52], such approach is applied to the Satellite Univekéabile Telecommunication System (S-UMTS), in order
to mitigate the effects of delay. Both RLS and LMS algoritransinvestigated. It is concluded that the RLS algorithm
converges faster but the LMS exhibits superior trackindquarance.

Prediction of future received power is also used in [53] it goal of improving the quality of the transmission
for the active users in 3G cellular systems. The proposédisgihg predictive power control algorithm uses the RLS
algorithm and performs better than the conventional powatrol, specially for high speed scenarios.

Similarly, in [54], adaptive filters with tap-coefficientpdated by LMS and RLS algorithms are used to propose
new prediction-based power control algorithms in the caré CDMA mobile radio system. However, in this case,
the power gain instead of power prediction is accomplisBadulation results show a lower outage probability when
compared with the conventional power control algorithmhvaiptimum power control threshold.

4.13.3 Neural Networks

A neural network based channel predictor is presented ih [3& estimate obtained from the neural network along
with the pilot assisted channel estimate is used to determsuitable power control step. Neural network prediction
based power control scheme is compared against the 3GP& didsame in terms of Bit Error Rate (BER), average
transmit power, MSE of SINR and the distribution of the SINJ®at the threshold. It is found that the neural network
based scheme performs better at medium to high speeds.

In [56], a neural predictor for received signal power prédit in DS/ICDMA systems is proposed. The results
show that the optimized neural predictors can provide &arit SINR gains at low speed while the improvement at
high speed is clearly smaller. Other publication where pqwediction is accomplished is [57]. There, a predictive
reverse-link power control scheme is proposed in a CDMA ieobystem. Results show that the proposed scheme
outperforms the conventional power control with optimumegihold at all speed ranges considered.

4.13.4 Kalman Filter

The Kalman filter is widely employed in prediction tasks fawirovement of power control in wireless networks, for
instance [58, 59, 60]. It can be used to predict power gatarfierence power and the transmit power.

In [58], Kalman filter is used to predict interference powelai TDMA wireless network, assuming that the in-
terference signal and its measurements are corrupted bipvaddhite Gaussian noise (AWGN). Based on the pre-
dicted interference and estimated power gain betweendhnsrritter and receiver, transmission power is determined
to achieve a desired SINR performance. Simulation reseitsal that the Kalman filter method for power control
provides a significant performance improvement in wirefessket networks.

Dynamic channel and power allocation algorithms are dg@ezlan [59] using the Kalman filter to provide pre-
dicted measurements for both power gain and interferenaeiponder the assumption that they are corrupted by
AWGN. In [60], a power control algorithm for mobile commuat®ons that uses the Kalman filter to predict the
transmit power is developed.

4.13.5 H Filter

H . filtering becomes an interesting alternative to the Kalmiéeriing when model uncertainties are significant, since
it determines upper bound to the estimation error, with rzedeence on the knowledge of the disturbance statistical
characteristics [61].

In [62], a SINR-based stochastic power control scheme w&imghastic control theory is proposed. The measure-
ments of SINR can be assumed to contain white noise and thkagttic power control problem is formulated as a
linear stochastic discrete-time system driven by whites@olThe variance minimization problem for the weighted
sum of variances of SINR error and transmission power wherSiiNR is corrupted by AWGN is studied. In this
research work, there is no assumption on channel modetddsa robust estimatoF(,, filter) is used to estimate the
power gain. Another power control algorithm also based ef3iNR error optimization is proposed in [63], with the
application of anf, filter to predict interference power.
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An alternative estimator-based approach that is also ierggnt of the specific stochastic nature of the interference
is presented in [64]. A power control algorithm which minz@s an objective function incorporating both user-centric
and network-centric metrics is developed with the predictf interference power accomplished by/dg, filter.

4.14 Conclusions

Power control is an essential technique for wireless comecatinn systems where there exists interference among the
radio links. In centralized power control, the entire powleannel gain matrix is available and transmission power of
all transmitters may be simultaneously controlled andtjpidetermined. The more classical solution to this problem
assumes null noise power and defines a maximum balanced $Eéngeted by all traansmitter/receiver pairs.

Distributed (or decentralized) power control is of speairest and importance, since it allows the use of only
local information. Algorithms are usually based on sigeakl or SINR. SINR based power control algorithms are the
most common ones, with a large variety of approaches. Imtg@ars, formulations of distributed power control as
Nash noncooperative games have been intensively studi¢idating numerous interesting results.

System performance can be improved by implementing morgntechniques for power control as transmitter
removal and decreasing of target SINR. However, performariqpower control algorithms are limited by some
aspects as time delays, discrete power domain and impedtaetates of channel, interference and power. Prediction
techniques, for instance Taylor’s Series, LMS and RLS Atpars, Neural Networks and Kalman af,, filtering
have been increasingly used to deal with the problem of ifepeestimates.
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5.1 Overview

5.1.1 Introducing crosslayer

Design and optimization of communication systems coneeiafiy is based upon a vertically structured abstract sys-
tem description. The different components of this modekatkedlayersand their serial concatenation is known as a
protocol stack The different layers within a stack only employ the funnatities of their lower neighbor and export
functionality exclusively to the next higher layer. Themef the definition of interfaces between different layeis pr
vides the means to manage the complexity of systems engigeseyit allows for the mutually decoupled investigation
of the functionalities within different layers. A very prament example of a system description that has received wide
attention is theopen system interconnectig®SI) model presented and commented in, e.g. [1, 2]. It dlasghe
functionalities of a communication system into seven lay@hese OSI reference layers include at the bottom of the
protocol stack the physical layer and the neighboring dakdayer. The latter is comprising the media-access cbntro
(MAC) and the logical link control (LLC) sublayers. The kttpart of this chapter focuses on issues within the PHY
and MAC layer of mobile communication systems.

Motivating example

It is common practice to optimize the functionalities offdient layers mutually independently. Although this ap-
proach has served well in the design of a wide number of conration systems, e.gecond generatio(2G) mobile
communication systems, it is clearly suboptimum. This lafloptimality results from several reasons, the most
prominent of which are listed in the following:

e The limitation of information exchange between the layersglers complete classes of information theoretic con-
siderations impossible. Among them are all approachesbiya¢fit from the combination of the functionalities
within different layers, e.g. channel aware scheduling.

e The componentsin a protocol stack do not necessarily peavitrictly monotonic mapping of inputs onto output.
Hence, the optimization in a layer with respect to its outpight be counterproductive in an overall sense. To a
large extent this problem can be avoided by the proper dedignitable interfaces, but yet remains existent in
many communication standards.

e Virtually all layers face trade-offs between different@areters. Hence an infinite number of solutions are optimum
to the knowledge of the corresponding layer, i.e., they appguivalent. But different choices might result in
drastically different performance within other layerst ¥@thout cross-layer communication each layer has to
rely on pre-defined heuristics when choosing a specific tratiech obviously results in a suboptimum system
configuration. Fig. 5.1 illustrates the often addresseatkb# between rate and error probability when transmitting
data over aradditive white Gaussian noiS@WGN) channel. For a specific settihgarious choices for the data
rate are known to result in different values for the resgl@nror probability. To the PHY layer all points, i.e., all
PHY configurations, on one of the plotted lines are equivadsrthey all require the same amount of resources.
Yet, to the MAC layer, which in this example employs antomatic repeat reque$ARQ) protocol, different
configurations lead to different values for the resultingtighput, i.e., the net data rate. Including this crossiay
information when configuring the PHY layer therefore can edito optimize the overall system performance.

! Different settings in this example are characterized thhadifferent signal to noise ratios and different lengththefemployed
block code.
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Fig. 5.1.Solving the rate vs. error probability tradeoff through Waedge about the used protocol, i.e., ARQ.

To overcome these imperfections the topic of cross-layéimipation has evolved. It aims at improving the inter-
actions of different layers by introducing a limited adaiital information exchange and by allowing for a certain
degree of cooperation between the layers. These additiegates of freedom are used to adapt the parameters within
different layers in order to optimize the mapping from irgiat outputs based on the provided cross-layer knowlédge.

Notation and assumptions

We use italic script to denote any kind of variables. Romant fe used for operators and labels. Furthermore we
use lower and upper case bold face letters to denote vecidrmatrices respectively. Beside the specific premises
that are introduced in the system model sections of therdiftesections let us make some general assumptions: All
occurring random processes are stationary and zero meacoig@ler perfect knowledge about the statistics of the
involved random variables. Hence the distributions ofatidom variables are known to all system units. With respect
to the channel coefficients we denote this knowledge abaustétistics as partimhannel state informatio(CSlI).
Moreover, we assume that the receivers have knowledge #ifuhstantaneous channel coefficients, i.e., has full
CSI. Explicitly we do not consider the problems of obtainthg different levels of state information by means of
estimation theory.

5.1.2 Structuring the field

There exist virtually infinitely many different problemsattdeserve the label cross-layer optimization. The folhmvi
paragraphs shall provide three dimensions that allow tegire the field and to classify the contributions made.
Range

A first and almost canonical question is which layers areallgtwptimized by the repective scheme. We call this
set of all tackled layers the range of the scheme. Typichlly,of course not necessarily, cross-layer techniques
jointly address problems in adjacent layers. Giving thegeanf a scheme automatically establishes a relationship
upon virtually incomparable algorithms.

Modularity

Yet a certain class of cross-layer schefissiot accessible to these range considerations as theyyrimemestigate the
interaction and the optimization of a modular protocol ktdtese schemes might be applicable to any subset of layers

2 Input and output of a layer are often referred to as resouncdguality of servic§QoS), respectively.
3 In fact these were the schemes to initially come up with the tzoss-layer
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as they propose, e.g., techniques for exchanging infoomatnong layers, for whether to optimze in a distributed way
or to centralize computations etc. We refer to a perfectlguotar scheme if it is scalable in the number of layers from
210 co.

Orientation

Placing the made contributions in the spectrum of publistreds-layer techniques, let us differ between two funda-
mental approaches based upon the formulation of the regpegttimization problen.One part of the known cross-
layer schemes aims at the cross-layer aware maximizatitmeadutput of all layers based upon their inputs. Hence
the considerations start with the lowest layer and maxirnt&zeutputs subject to a set of constraints on the available
resources. Doing so, the optimization regards all crogsrlmformation that is communicated from the upper layers.
Further on the optimization makes its way upwards througlptiotocol stack. Layer by layer the local parameters are
chosen to maximize the layer’s output for the given inputander consideration of the available cross-layer informa-
tion. The resulting system mode therefore employs all alséglresources to provide the best possible service on top of
the system. Due to its directivity we refer to this approasha@ttom-upcross-layer optimization. Complementary to
that,top-downtechniques operate on the basis of certain top-level reménts. Hence the cross-layer scheme begins
with the highest layer in the stack and optimizes its paramsetuch that the input that is necessary to provide the
required output is minimized. Again all available crosgelainformation is included. The resulting minimum for the
input is propagated to the next lower layer as a requiremegor corresponding output. In this manner the optimiza-
tion works downwards from top until a system mode is foundt firovides the required service with a minimum of
overall resources. This system is then said to act at its@namaximum.

5.1.3 Reviewing relevant contributions
Bottom-up

The publications [3, 4] shows how to maximize the throughpwt multi-user system by means of optimum power
allocation in PHY and MAC layer. The non-modular bottom umsiderations within base upon a very abstract
system that allows to transfer the resulting techniques\ariety of communication systems. Optimizing a wider
span of layers [5, 6] introduces a rather modular frameworkbttom up problems. It bases on utility functions, i.e.,
a generalized QoS expression that is implied to be monotuitlicrespect to the data rate on the physical link. On the
background of an OFDM system with infinitesimal granulanitythe frequency domain the authors derive solutions
to the problem of dynamic subcarrier allocation and an adamtower allocation scheme for QoS maximization.
Moreover the results are employed to derive statementsendhvexity of the feasibility regions of data rates and
the global optimum of the posed cross-layer optimum. Théamstin [7] moreover employ the concept of utility
functions to formulate a pricing problem for the optiminattiof network resources in higher layers. layer description
this approach leads to a multiobjective optimization peoibs the core of the bottom-up cross-layer design. In [8] the
authors introduce a sum throughput maximization for PHY BIAC layers in HSDPA that employs the possibility
of adaptive modulation and coding and includes the ARQ matmto this optimization. Based on a later release of
HSDPA [9] combines physical layer transmit processing wittross-layer based adaptation of the MAC modulation
scheme. This approach is used to optimize the sum throughputross-layer oriented scheme for HSDPA base
stations.

Basing upon the analysis of application-level QoS the astho[10] study cross-layer optimization for a variety
of different 3G and 4G CDMA systems. They propose a set ofjoais to serve different classes of applications with
the associated QoS. Within the authors employ all availeggeurces to maximize the system capacity. Bottom-up
techniques can also be applied to video streaming sernide4 2] or gaming applications, i.e., allow for a combinatio
of APP, MAC, and PHY layer. An example for such a bottom-uproation that aims at video streaming applications
can be found in [12]. The authors therein employ a low coniptexdeo quality measure that can be formulated
analytically. The central cross-layer optimization thgren aims at the maximization of this QoS metric.

In the perfectly modular approach [11] the authors proposmse the layer descriptions on efficient sets of Pareto
optimum points of operation. With a central monotonicityistraint on the employed layer description this approach
leads to a multiobjective optimization problem as the cdrthe bottom-up cross-layer design.

4 The proposed classification not only applies to cross-lésgres, but can be used for arbitrary problem statementsnin ¢
munications. Yet it serves especially well in this field aalibws for a general discussion of the wide variety of criag®r
contributions that have been presented in literature tBcen
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Top-down

Considering the wide span from the top of the OSI transpgdrléo the PHY layer the authors in [13] analyze the
interconnection of system level power minimization and y&gr throughput on the background of lazy scheduling.
A trade-off between throughput in a TCP protocol and avegergy per information bit is presented and opti-
mum scheduling policies for different sublayers are charazed. Moreover [13] proposes an efficient structure for
cross-layer communication. With the modeling of voltageled processors, adjustable power amplifiers and variable
strength coding the authors in [14] formulate the relatibasveen range, reliability, latency and energy as the four
cross-layer system parameters. The derived solutionsdrase energy based description of all relevant processes.
Yet the model cannot be used to formulate optimum transonisgirategies, i.e., solve the underlying cross-layer opti
mization problem. The contributions in [15] analyze the-tlmwvn problem of minimizing the average transmit power
subject to constraints on the channel capacity in the sdii$6JoAdditionally [15] includes a queuing theoretic mdde

of latency time employing Markov decision theory. The résalre presented as trade-off between average transmit
power and delay for a certain throughput requirement. Si#l extension of these works to multi-user settings and
omitting the assumption of full transmitter side CSI areropeoblems.

5.2 A generic scheme

5.2.1 Introducing CLARA

This Chapter introduces a generic approach to top-dowsdey®r optimization of communications systems, cf. [17].
It aims at delivering a certain amount gfiality of servicQoS) to the users, while simultaneously minimizing the
required system resources.

Notation

To this end let us define the three relevant classes of systeamgters explicitly:

e The matrix@Q € RMe*K contains theNg QoS parameters of th& users that are present in the system. These
QoS parameters are the only relevant interface to upperdayel sublayers or the application itself. The different
service demands of the users are characterized by requite@€9 upon these QoS parameters.

e Theresources of thE users are denoted by a veciBre RX. Hence only a single resource parameter per user is
considered.

e The mode of operatioM contains all optimization parameters that are not consitlas resources.

Without loss of generality let the ordering of userdtM and@ coincide.

Problem statement

With these definitions the cross-layer problem can be foatedl as the minimization of resources. For a given form
in P we find the optimum resource allocation and the optimum mddgperation as the solution to the following
optimization:

{P*, M*} = argmin |P|| st: Q> QUY, (5.2)
{P,M}

5 The extension to multiple resource parameters per usee@xtiension to integer resource metrics does in generabntrtalict
the results of this Chapter. Yet the solution of the in thisecanatrix valued problem:

P = arg}r)nin |P| st: P> Pl (5.1)

which occurs to be part of the resulting cross-layer optatian algorithm can not be implied for general choiced?of Rﬁf’o.
Hence the extension to multiple resources per user is léftespecific environment where additional constraints mégiply
to provide a solution to (5.1).

5 In fact any order relation can be used to define this problentife remainder of this thesis though we exemplarily emhey
quasi order relations of different matrix norms. These roane reflexive and transitive, i.e.qaasi-relation and hence qualify
in this context.
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where the constraining inequalities hold component-wi$e presented technique is proven to be optimum for a
wide class of systems.

To this end Section 5.2.2 introduces 3 propositions, whigdrgntee the applicability of the upcoming considera-
tions. Based upon these propositions Section 5.2.3 an8l fa@nulate a converging iterative approach that yields the
optimum solution up to arbitrary accuracy. Key to solving firoblem in this wide generality is the transformation of
the original program into a conditioned version that is edlin Section 5.2.3. This equivalent problem can be shown
to be independent of shortterm properties. Moreover itas@n to be decoupled among the users which allows for an
offline computation of the optimum mode of operation.

5.2.2 Formulating necessary propositions
Let the representation of thi€ user system be given in the form:
Q="w(P), Yn:Rf,—RVxX (5.3)

where theNq different QoS values for each of tié users inQ € R¥e*X are defined through a modd dependent
mapping of the system resourcBsc ngo. This representation exists for all systems and for all ob®bf QoS and
resources respectively. Yet not all of these represematian be given in closed or even in invertible explicit form.
Preparing the derivation of a generic approach for crogsrlaptimization of a wide class of communication systems
some preconditions ofif¢ will be made in the following paragraphs. To this end let usoduce the notation of
longtermandshorttermparameters. It refers to time variant processes of the tndtiger and classifies all parameters
that depend upon the instantaneous realization of thesmgses as shortterm parameters. Characteristics of their
probability density function and variables in higher lss/érat are independent of these fading processes are caetside
longterm parameters. On this background let the followirgppsitions hold:

Proposition 1. The functioriy is decomposable into three components as follows:

r®H:Pp—P=0"P), P ,PcR, (5.4)
Y P—Q=0(P), QecRVxK (5.5)
r®:Q—Q="%Q, muw), QcRX (5.6)

Within P = Y (P) gives a longterm description of the fading multiple accesanael. The outage probability
mout € [0; 115 is defined through the shortterm penddf®) of P as:

Tout = Pr (15<5‘> < 15) , (5.7)
where the inequality holds component wise.

Proposition 2. The functiong (), 1.2 andY® fulfill the following properties:

1. The functior is strictly monotonically increasing on its diagofaind is monotonically decreasing in all
off-diagonal elements.

2. The functiorirﬁ) is diagonal.

3. Conditioned oy a solution for the unique inversidi®—1 of (3 exists with

Q= r® (T(S)’il(QJ"out)J"out) ) (5.8)

Through the decomposability in Proposition 1 the paranseferand 7o, form a longterm description of the
shortterm fading processes that is valid as long as thedgatiocesses can be assumed stationary. For an information
theoretic backup of this approach we refer to [19]. The caifagbability therefore is defined as the probability that
the shortterm representatid?s) of P is smaller thanP.8 The functionrﬁ) gives a description of the remaining
system in non-outage cases, WHIT€®) determines how these outage events affect the specifiedl@t8 reasonings
will suggest the terminologgquivalent resourcefor P andequivalent Qo$or Q respectively. Fig. 5.2 visualizes the
decomposition off. With the definition of the three representatiaed), 7\?) andr® the decomposable function

" Diagonality in this context refers to the user indices.

8 This definition applies no matter if the strategy to adBpbperates on a longterm or a shortterm scale, i.e., no makttether
P itself is a longterm or shortterm parameter.
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Q
Q= T(g)(Q, ﬂ'out)

A -

Q
TCout Q = TJE/?)(P) < M

A

P

P =rY(pP) -~ P

Fig. 5.2.Schematic representation of the system model

T can be expressed in a concatenated form as:
Q=" (P) =T (77 (Y (P)) , 7ou) - (5.9)

The components of this composition are subject to precmditas presented in Proposition 2. According to the
first clause within, the equivalent resourEeof a user is strictly monotonically increasing with this tseesource
while it is monotonically decreasing with the resourceslbétner users. Through the second and third claugé!)
moreover is required to carry the complete regarded infle@hshortterm system parameters. The required diagonal
nature oij(V%) translates into user wise decoupled system cores that tterrgomplete dependence on the mode of
operation. Hence the equivalent requirements of a kserthe vectongq) must be completely determined by the
equivalent scalar resourd®, of the same usek. This condition is somewhat canonical as parameters tiaeince
the performance of all users are typically classified aswess rather than as mode parameters, e.g. the transmit
power in multiple access schemes. Typically the funcmﬁl) will span the widest part of the cross-layer problem

as the corresponding clause 2.2 does not make any restgaioits diagonal elements. Cleaﬂrﬁ) does not even
have to be a continuous function neither does it need to hiéablain closed form. This fact comprises the central
strength of the presented approach, because it can sollséeprs that are typically not accessible for conventional
optimization techniques and their application in crogetalesign. The third representatié®) includes the influence

of the outage probabilityro,: and additionally allows for an invertible non-diagonalengion of the concatenation
Tﬁ) (T(” (P)). This feature allows to include upper layer resource atlonsschemes, the parameters of which are
not subject to the regarded cross-layer optimization tledéras. Henc& ) does not depend on the mode of operation
M and must be given in a description that is independent ottsiior system parameters. The extendidf is more
important for the validity of the regarded QoS expressitiasitit is relevant to the optimization process with respect
to M.

5.2.3 Solving the optimization
Conditioned optimization

The central problem of this work is to derive cross-layeotese allocation schemes for the above defined system
class through the solution of the following optimizatiomplem:

9 The demanded property is inherent to a wide variety of mieltigcess schemes. It can as well be found in axiomatic apipesa
like [20, 21].
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{P* M*} = argmin||P|| st: Q>Q", with Q=" (P). (5.10)
(P M}

To this end let us first derive the solution of this problemditoned on the outage probability,,.. Conditioning
the solution to an a priori known value fat,,; allows for the decomposition of the optimization task andstshall

be of a certain relevance to the optimum procedure in Se&iar3. Hence, the following paragraphs consider the
optimization:

> Q. (5.11)

Tout

(P* M"} = argmin [|[P| st: T® (T}v? (T(1>(P)),7rom)
(P.M}

As this program as well as the original task (5.10) is not ssitde to conventional optimization techniques because
the derivatives with respect to the possibly integer valmede variabléVl is not defined and’ﬁ) additionally does
not necessarily allow for a closed solution of the resuli@gush-Kuhn-Tucker conditions, let us regard the follogvin
theorem:

Theorem 1.Let o, be the outage probability that through®) corresponds to the equivalent resourd@®. Fur-
thermore let the equivalent requiremei?§% be defined through the inversion %) conditioned onry. Then the
solution to the problem:

{MZ,PISrq)} = argmin P, st: Q> ng), (5.12)
{m. P}

is independent of the requiremejr?tégq), V¢ # k and is independent of all shortterm system parameters. Miwau
of the solutionév(;, forms an optimizeM™ to the cross-layer optimization program (5.11)

Proof. The first two clauses of this theorem are directly proven lppBsition 2. Due to the diagonality dfj(v? the
constraints are diagonal too and hence the solution for $kekudoes not depend upon other users’ equivalent QoS
requirements. The same applies to the independence ofdimgfparameters. Key to the proof of the last clause of
Theorem 1 is the monotonicity of the equivalent resouesith respect to all resource®. This monotonicity has
been part of Proposition 2 above. As the resources only tirdtand throughr . influence the QoS and furthermore
the problem is conditioned on the outage probability thisiotonicity suffices to show that a minimization of the
resourcesP will inherently result in a minimization of all equivalen¢ésourcesP. Therefore the objective and the
optimization with respect t@ in (5.11) can be replaced bi without violating the validity of the solutiofv(},.
Employing the decomposability @ and the invertibility ofY®) the constraints of (5.11) can equivalently be
expressed through a set of requiremeRt&) on the equivalent Qo®). This concludes the proof of the optimal
nature ofM™* for (5.10).

The decoupled and equivalent formulation of the originalgram through the problems in (5.12) provides little
advantage in terms of Lagrangian optimization. Still comgrats of the optimization paramet®t;, are discrete, the
corresponding derivatives do not exist and the Karush-Kincker conditions can not be applied. But the achieved
decoupling among users and the gained independence ofahleprfrom the instantaneous channel realization render
the accessibility to Lagrangian methods unnecessary:

Corollary 1. The equivalent requirement gq> uniquely determine the solution to the optimization proigen(5.12)
In particular the program is independent of the state of @pien and therefore the solution for any equivalent QoS
requirements can be obtained offline and prior to operation.

Explicitly the optimum mode of operatidi(;, can be precomputed for a sufficiently dense grid}fﬁ*) offline by
sampling theNg x K dimensional range orﬁ). The equivalent Qo) to this end is computed for an arbitrarily
large but finite number of system modes and for a suitable eumibvalues forP,,. Storing these offline computed
solutions in anNg dimensional database allows for the offline determinatibthe optimum mode of operation
for grid of equivalent requirements. Each grid point defiadsasibility region through its equivalent requirements.

Searching this feasibility region for the mode that prosid}‘,!‘“) with a minimumﬁk(rm is chosen as the optimum
modeM .. During operation the solution to (5.12) thus can be obthiheough a single table lookup. The problem
(5.12) therefore can be solved very efficiently at an abeshihimum of computational cost. This makes the proposed

procedure easily accessible for real-time implementation

10 @y, M, and P, denote thekth user’s portion of, M and P respectively.
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Iterative procedure

With the above Section a low complexity solution to the ctindied problem setting (5.12) is available. The upcoming
considerations in this Section now focus on optimizing treeof operation and the resource allocation among all
K users employing the results form above. We target the pmobfeinding the mode of operatidht* that fulfills a

set of QoS requiremen@® with a minimum amount of resources, cf. (5.10):

{P* M*} = argmin||P|| st: Q>Q", with Q=" (P), (5.13)
P M}

where the functiorl’,; belongs to the above defined system class and fulfills the mpeafgerties introduced in
Section 5.2.2. Aiming at a generic solution that appliesltoegresentatives of the above defined class the solution
of (5.13) through the calculus of Lagrangian multipliersldme Kuhn-Tucker theorem renders impossible. Moreover
neither the functiorYj(V%) (P) nor the mode of operatidht necessarily is accessible to these mettdds.

We propose an iterative framework to solve (5.13) with aalojt accuracy. An overview of this approach is given
in Fig. 5.3. The approach is based on an iterative adaptefitire outage probabilityto,; Which in the further context
will be indexed by the iteration numbeéras moui]. The solutions within each iteration hence can base upon an
assumptiontoyi] on the outage probability that was obtained during the tasgiion. The problem thus reduces to
the conditioned optimization investigated in Section3.%iven the outage probability,.|i] that corresponds to the
optimum vector of equivalent resourcE¥% the program reads, cf. (5.11):

{(P*,M*} = argmin | P|| st: T® (r}v? (r<1> (P)) ,frout[i]) > QU (5.14)
[P

As shown in Section 5.2.3 the propositions made can be usdddompose this optimization into three separate
subproblems:

QY =@ —1(QUD 7o), (5.15)
{ Z,ﬁérq)} = argmin P, S.t. Q> ng),ij (5.16)
{™.P}
P* = argmin ||P|| st: P> P09, (5.17)
P

For convenient reading we dropped the indiin the notation ofP*, P9 andQ"@. While an efficient solution
for the inverse ofr'(®) was a precondition on the regarded system class the sobatitve problems (5.16) has been
derived in Section 5.2.3. Moreover the solution to (5.17%)tfee vast majority of multiple access schemes is known
or can be obtained through the monotonicitylof) as it was introduced in Section 5.2.2. The solution of thssro
layer optimization conditioned oftoi] thus is known and can be obtained at very low computationstl &ith
the optimum pair of modes and resourdd3*, M*} the resulting outage probability,i| of the system can be
determined through its definition in (5.7). Unlessy(i]| = 7rou[¢] the solutions obtained from the conditioned problem
(5.16) is not a valid solution for the original task (5.13heTmade assumption ery[i] has to be adapted and a new
conditioned problem has to be solved. To this end we propestotiowing update rule:

Tout + 1] = oul]. (5.18)

The resulting structure of the iterative scheme is sket@h&ih. 5.3.

Proof of convergence

Through the solution of arro(i] conditioned version of the original problem the cross-taygtimization can be
solved through an iterative scheme as sketched in Fig. 8t3h¥ obtained iteration is of no use if its convergence can
not be proven. To this end let us state the following Theorem:

Theorem 2.Let mo,0] = 0 be the initialization for the iterative scheme. Furthermdet 7wo,{i] be defined as the
outage probability that results frotv(* and P* as defined if{5.14) Then the iteratioriroui] = moudi — 1] converges
andmouti] = moué — 1] holds with arbitrary accuracy for large.

1 The functionrﬁ)(ﬁ) in non-trivial settings usually is too complex to provide iamertible system of equations from the
Karush-Kuhn-Tucker conditions, whereas the mode of oarat many relevant applications contains integer vagabHence
the derivatives involved in the conventional solution aéthroblem are not defined.
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Q(YQ)

QM =707 (Q, Fouli])

Q(FQ)

{M, P9} = argmin B o _
M - {My, Py} Troutft + 1] = mout[7]

st: Qr>Q, vk

pa

P - P* = argmin ||P|rst:P > P
P

Fig. 5.3.Schematic representation of the iterative cross-layeénopation

Proof. To prove this convergence assume an arbitfagy(i] = mouli — 1] > #ouli — 1] from the interval0; 1]%. By

the definition of the outage probability the increaserify|i:] necessarily results in an increase in all components of
Q"9 i.e., larger equivalent requirements with respect to tiaeation: — 1. This is due to the fact that an increased
outage probability will enlarge the QoS decreas®ii). Due to the inequality nature of the constraints in (5.16) th
monotonicity with respect téou(i] applies to the requirements on the equivalent resouPtBs as well. To this end
assume that an increase@}'® from iterationi — 1 to i yields a decrease @#" in the optimum solution of (5.16).

Then this new value foﬁ,ﬁr‘“) would provide a smaller solution to the problem in iteration 1. Thus the solution in
iterationi can not be optimum, which is a contradiction. Hence an irsgré@outage probabilithou(i] > Frouli — 1]
always results in requiremeni&™ that are equal to or larger than the corresponding valudmiptevious iteration.
Due to the positive semidefinite nature of the equivalentueses and the definition of the outage probability this
inherently results inroui] > mouli — 1]. Through the updatéou(i + 1] = moué] @ Single increase itro,; causes a
monotonically increasing seriés,[i]. Becauser,i] is positive semidefinite, the initial choice,,[0] = 0 results

in 7rou1] > 7outf0]. In the case of equality = 1 directly fulfills the condition for convergeneeyi:] = moult — 1].

In all other cases, the above derivation prowgg[i] to be an monotonically increasing sequence. Hence the pfoof
convergence is obtained from the bounded nature of the pildgantegral, i.e.,moui] € [0; 1]%.

Proof of optimality

Theorem 3.Letm,,[0] = 0 be the initialization for the iterative scheme. Furtherm&stM* and P* result from the
fixpointm, = mouli*] = Fouli*]. ThenM™ and P* are optimizers tq5.11)

Proof. Assume the existence of another fixpoirfy,, = mouli’] = Fouli’]. First if mh, > mi,, M’ and P’ must
be suboptimum t&W(* and P* due to the inequality nature of the constraints. Secaig, < 75, would imply the
existence of such thattoui] < Towli’] = 7oy < mouté]. This contradicts the monotonicity of the serigs:[i] as
proven above and thus concludes this proof.
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With the conclusion of this proof the iterative procedureSefction 5.2.3 is known to converge for all problem
settings and systems that fall in the defined class. Yet thisergence does not prove the feasibility of the posed
optimization task. As possible feasibility constraintglo@system resources can always be included in the defioition
the corresponding outage probability we propose to defiéathsibility through the optimum mode of operativei-.
Hence a set of QoS requirements is considered feasible évieny iteration a mode of operatio™ = Uszl M,
exists among the finite number of system configurations duath t

{M2715]£rq)} = argmin P, S.t. Q> ng),Vk. (5.19)
{0, P}

For all feasible constellations though, the above resutigige the means to solve the cross-layer problem (5.10)
through the iterative consideration &f decoupled longterm problems. Based upon the results frenptévious
iteration, these problems are all conditioned on the outagbability. They have been subject to consideration in
Section 5.2.3 where the optimum was proven to be independém state of operation and the solution therefore was
obtained through a look-up in an offline generated table.ddehe presented iterative scheme provides the means to
efficiently solve the top-down cross-layer optimizationgram (5.2) for all systems that fulfill the Propositions.1-3

5.3 Some applications

5.3.1 Applying CLARA to EGPRS

With the generic results obtained in the above section maenavailable to jointly optimize radio parameters in a
wide variety of communication systems. The following sudties will demonstrate this applicability for the special
case of EGPRS, an extension to the second generation siaB8af.

System model

The crosslayer considerations regard all instances in ¢ &d MAC layer of a 2G communication system. The
generic system modé€) = 1 (P) is specified along

{p. 7} =T (P), (5.20)

describing the throughput, and the delay, experienced by the useks= 1, ..., K. The throughpup; of userk
is defined as the average net data rate that is available cof the MAC scheduling unit. LeB be the number of
information bits in a packet of length and letf,,[n] be the probability, that it takes exactlytime slots of lengti”
to transmit a packet error-free. Then the throughpus defined as:

1 B
= ——. 21
Pk = Bl T (5.21)
On the other hand we find an outage based formulation for theutage delay;. as:
[~'/7]
7, = argmin7’  S.t. Z faln] > 1 —m,. (5.22)
™’ n=1

Hencer; gives the time which in a fraction df— 7, of all cases suffices to transmit a packet error free, i.e lder
limit of the 7 outage quantile. These QoS parameters thr@Gghare expressed as a function of the users’ transmit
powersP;. The mode of operatioM consists of the FEC code rates and the modulation alphabetsusers. To
deriveY»(P) we tackle the following components:

Broadcast channels

We employ an SINRy; based description of the downlink channel along [22]. ldtrcing the coupling factot$ vy ,
the circulary symmetric complex Gaussian random variapheith variancea,%k, k=1,..., K and the noise power
P, we obtain, cf. the validations in [22]:

12 This modelling approach comprises the common assumptiadjetent channel only interference.
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B T P
= — .
21 VkerkPr + Py

o (5.23)

The elaborations in [23] demonstrate how this channel ordgehcan be extended to account for different receiver
structures. A central role is held by channel matched filtees, rake receivers which result i being the sum

of squared circulary symmetric complex Gaussian randonabkes. Their density function and distribution can be
obtained through Lemmata 4.3b.1-4.3b.3 from [24]. Giveawdedge about the distribution of the involved random
variables allows for the computation of the probabilitytttiee fading valuey;, falls beneath a constant threshold. This
outage probability generally is defined as the integral tveisetH of all infeasible channel realization:

K
wzégnww. (5.24)

The latter set depends on the specifics of the employed dokstliategy, i.e., whether fast power control is employed
or not. In the sequel we will assume constant power allonafibhence computes along
— T (th)
9{—{[7“1,...,7“;(] ‘TK<7“K }, (5.25)
[P

e—0+ K-1 11 1
- max{Pmax— 1 [P,]lTJIt hr—l,e}

(5.26)

Within we defined the diagonal matriR = diang:1 (r;) containing the channel gains and the coupling makias

—v for k#£4
Pile =9 X —vfor k="t (5.27)
Yo ¥ Ce

For numerical details on the computationmgf;; we refer to [25] and [26].
Channel coding

With this SINR model we can employ the noisy channel codimgptbam, e.g., [27] for modeling the FEC codes:

Theorem 4.For a memoryless channel with the corresponditid~; ) value and an input alphabet; of cardinality
Ay, there always exists a block code with block lengtind code rateR;, < Ry(;) so that with maximum likelihood
decoding the error probabilitytpe of & code word can be expressed as:

Tipe < 9—meq(Ro(vk)—RildAy) (5.28)

Due to the tight nature of this bound (5.53) serves as a gopdoajnation of the block error rate. The central
parameter within is the cutoff rate, which can be obtained as the maximum of the error expone7h For the

given system class and the modulation poits = 1, . .., A, the cutoff-ratekR, computes to:
2 A)Cfl Ak' 1
Ro(yg) =1dA; —1d |1+ i Z Z exp (_Z |ag — am|27k)1 . (5.29)
m=1 f=m+1

Unlike the more prominent capacity based approaches, tidehmo(5.53) includes the influences 4f, and Ry, i.e.,
the mode of operation.

Hybrid ARQ protocols

Let us extend the above Theorem 4 to include the effects of @ARotocols in the MAC, cf. [28]. These protocols
retransmit lost packets with possibly changing parity infation and decode all received instances of a packetyointl
This results in a reduction of the packet error probabilitthvevery transmission attempt. Let index these HARQ
transmission attempts. Then the decrease in block errbapility can be modeled through the above channel coding
theorem by

e calculating the code ratg;[m] valid for this transmission as the fraction of informatidtstand total transmitted
bits and by
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e including a proportional increase of the SINR for every hdttis transmitted multiply. Hencg, [m]| becomes a
function of the transmission number as well.

This hybrid proceeding allows to include Chase combinineetiAARQ protocols as well as incremental redundancy
techniques. In fact EGPRS employs both schemes simultahedhe corresponding values &y, [m] and the SINR
enhancement$ 4 ;. [m] such that

Yelm] = ave[m] (5.30)

for different modes of operation can be obtained from Table 5

Table 5.1.Numerical details of the EGPRS model

# Ri[1] Re[2] R[3] a V(1] a (2] a vx[3]

051 033 033 1.00 131 1.96
0.64 033 0.33 1.00 1.04 1.56
0.83 0.42 033 100 1.00 1.20
098 0.49 033 1.00 1.00 1.00
0.37 033 033 1.00 180 2.67
0.49 0.33 033 1.00 137 204
0.75 0.38 0.33 1.00 1.00 1.32
091 046 033 1.00 1.00 1.10
099 050 033 1.00 1.00 1.01

©oO~NOOODd»WNEPE

With the adaptation ofpe we can furthermore express the probability that it takestixar HARQ transmissions
to receive a packet error-free:

fmlm] = < ]f[ Tpe [m']) (1 — mpelm]) - (5.31)

m’/=1

Employing a proof from [23] this probability can be approstad very well for large code words &s,[m| =
d[m — m*]. This yields the probability of waiting exactly time slots for the successfull tranmission of a packet as

faln] = moa™ (1 — Tow)™ < nel ) : (5.32)

m* —1

The compound of all these components finally allows for theression of the throughput and the latency in the
investigated system and provides the specificgofr} = 75 (P) in a GERAN interface:

1 B 1-— Tout
- D RpldAgR., 5.33
Pk E[n] T m kldAg L, ( )
L~'/7]
T = argmin7t’  S.t. Z faln] > 1 —m,. (5.34)
' n=1

Let P, p, andT, denote thek x 1 dimensional multi-users compounds Bf, px, and, respectively. Then the
decomposition of the above modBl, : P — [p, 7] = T (P) along:

YD .Psy=71O(P), (5.35)
7 oy [6.7] = Tag (), (5.36)
@ [, 7] — [p, 7] = TP ([p, 7], wou)- (5.37)

complies with the propositions in Section 5.2.2. Hence thiative optimization scheme, the corresponding proof of
convergence, and the proof of optimality, respectivelplap

13 Some implementations discard all received packets aftgi transmission attempts and reschedule the packet from die ra
network control. These special cases are included in thehpodposed here through a periodic (and therefore non mammt
definition of Ay[m)].
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Optimization

Within this Section the cross-layer optimization in HSDRAdrmulated in accordance to the considerations in Section
5.2 as a resource minimization problem subject to a set dftcaints on the QoS parameters throughpuand delay

7. The cross-layer optimum mode of operatd6i® and the corresponding optimum transmit powEYstherefore

are the solutions to the minimization program:

pe > py? Yk

5.38
T < T,irQ) VEk. ( )

{M*, P*} = argmin||P||y s.t.:
{™, P}

The nature of the optimization parametersf implicitly poses further constraints to the optimizatiorolplem,
which are not stated in (5.38):

Cre{1,2,...,15}, Vk (5.39)
Ay, € {2,8}, V& (5.40)

whereA;, = 2 and A, = 8 correspond to the modulation alphabets for GMSK and 8-P&sfectively. The partial
derivatives of the Lagrangian corresponding to (5.38)rekéel by (5.39) and (5.40) are not definedCaand A are
integer numbers. Hence the Kuhn-Tucker theorem does nbt apg a conventional solution of (5.38) does not exist.
The upcoming sections thus employ the convergence of thegiite procedure presented in Section 5.2 to derive an
efficient algorithm that solves the cross-layer problenwitbitrary accuracy along the following algorithm:

Algorithm 1: CLARA in EGPRS

1lnitialization: i=0,mui]=0;

2 repeat

3 Increment: ¢« 7+ 1;

4 Updat e: frouli] = moutlt — 1];

5 | Equivalent requirenments: [p0D 7] =71E)—1([pra) +0D] 70, [i]);
6

7

Mode optim zation through LUT;
Conput ati on of moui;

s until Wout[i] = ﬁout[i] + €,

9 Power control;

Equivalent requirements

In the given contex¥™(®) can be inverted by eliminating the influencemf, from throughput and delay. Hence we
can find the equivalent QoS parameters as

1

ﬁ(TQ) _ — p(TQ), (5.41)
1 — Troutlt]
|- 7|
F(ra) — max Tm* s.t.: Z faln] > (1 —m;). (5.42)
n=1

Decoupled mode optimization

Referring to Corollary 1 we can find SINR requirement¥) that will guaranteép®, +(9] through a single lookup-
table. This database can be built from system model compenen5.3.1, or may be supported through numerical
simulations or even measurements. This provides the optisalution to the/X” problems:

= ~(rq)
> Yk
M3, )y _ argmin st PE= Pk 5.43
{ ko Tk } {J\/Egk,’yk},)/k e < 7':]&“1) Yk ( )
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Resource allocation

Last stage within an iteration is the solution of the dowkaower control problem:

P* =argmin1"P st: y, >40Y, vk (5.44)
P

It is known that the corresponding solution is completeltedained by the always active constraints. Defining the
diagonal matrix of channel gairf? and the full-rank coupling matri¢ through its elements as:

—(1-v) for k#¢
Ple=9 -2 —(1-v)for k="t (5.45)
Y Ck
we obtain the optimum power allocation for the given SINRstaaints as the solution of this linear equation system:
R¥P =P,1. (5.46)

With these powers the framework in [26] can be employed toutate the channel outage probability and hence
conclude the iteration by updatirigi + 1] = mou].

This provides a low complexity algorithm to minimize the essary transmit powers subject to a set of constraints
on throughput and delay. A service request therefore candgexred in a maximum economical way, which by means
of scheduling algorithms like the EQ0S scheme in [29] carrdresformed into increased system capacity.

Evaluation

The results in this section show the large potential cragstltechniques have to enhanced 2G systems. The underlying
simulation environment investigates 1000 longterm sgstirach consisting of 5000 time slots of length-or every
longterm realization, user locations are generated rahg@assuming a uniform distribution of users in the cell. The
resulting path losses, i.e., the inverse of the varianégsare derived from the distancédvetween MS and BS using

the Hata pathloss model as introduced in, e.g., [30, 31]ekery time slot in a longterm setting, channel coefficients
are generated. An industrially-deployed FEC turbo codesidy providing the ACK and NACK messages to the
fully implemented HARQ protocol. Recording all relevantpaeters allows the evaluations of the QoS compliance,
the power savings which are possible through the proposdthigue. The numerical values for the used system
components are displayed in Tab. 5.2. Within the MCS indéxesvailable modes of operation. In addition to the

v T1 — T3 T4 Tr MCS
—18dB| 10 ms {100 ms|0.01|[1 — 9]

Table 5.2.Numerical parameter values used in simulations

structural settings of the model in Section 5.3.1 the prapam of a packet transmission is assumed to cause a delay of
T;. As the standard requires the HARQ implementation in theoperform mentioned in Footnote 13 withax = 3
every3th transmission faces a longer delay accounting for theddrip time to the RNC and back. We assumed a
receiver noise level of-95 dBm and a maximum transmit power of W, which together with an antenna gain of
18 dBi, results in areffective isotropic radiated pow¢EIRP) of60 dBm.

In afirst step, Fig. 5.4 proves the QoS compliance of the dags scheme. Serving three users with QoS demands
on throughput/delay 0P kbps /100 md, [18 kbps /100 mg and[27 kbps /100 mg respectively, the simulation of
1000 user settings, i.e. location of the users in the cedijlited in 1000 values for the throughput, obtained from
averaging the data rate over the evaluated 1000 channgatéahs. The lines in Fig. 5.4 show a histogram of these
throughput realizations, revealing a superb match of requent and de facto measurement. The constructed system
model allows the algorithm to precisely control the QoS peeters, allowing for the targeted power minimization.

Power savings

As the philosophy employed to derive the proposed solutias the overall minimization of transmit power, this
section elaborates on stochastic descriptions of thertriip®wer necessary to serve the mentioBeers with their
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Fig. 5.4. Demonstration of the QoS compliance of the proposed cags-ttechnique for 3 users with throughput demands, of
18 and27 kbit/s respectively.
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Fig. 5.5.Visualization of the power distributions obtained for 3felient users with different QoS requirements.

demands. Note that any powBf, < Pnax iS only possible by the above means of QoS managementpipeddwn
cross-layer optimization.

The cumulative distributions reveal that the above-dised$Q0S compliance can be achieved with significantly
less than maximum transmit power in a large number of cas&8% of all time slots in the investigated example the
QoS requirements can be met with odlydB EIRP (cf. Fig. 5.5).

A more competitive reference can be obtained by providirgréquired QoS with a suboptimal mode. Exem-
plarily, Fig. 5.5 includes the PDFs resulting from a constande mismatch by selecting the mode corresponding to
the next higher MCS value. The dash-dotted line in Fig. 5dwshthe significantly larger power consumption of the
resulting system configuration and thus visualizes theitéhsof this performance measure with respect to mode
selection.

5.3.2 Applying CLARA to HSDPA

A second exemplarily application of the proposed genetiest shall be derived upon the background of HSDPA.

System model

This Section derives analytical expressions for the Qo8maters throughput, and delayr, of userk. To tihs end
we adopt the QoS definitions from Section 5.3.1 and define thdenof operatiod ;. of userk as an element of the
cartesian product:
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My, = {Ck, Ry, Ak} S {1, 2,..., 15} X [0; 1] X {4, 16}. (5.47)

The modeM;, consists of the number of employed CDMA code chanidglsthe code rate?;, of the employed
FEC code and the cardinality;, of the employed modulation alphabét,. The union of all mode31;, is denoted as
M = {M;,..., Mg} and contains the modes of all users.

Broadcast channels

Let K, of the K users share the same time slaind let the physical channel to ugebe modeled by frequency
selective uncorrelated block Rayleigh fading. The chagpefficients are assumed constant over the period of one
slot of lengthT.* The channel thus is characterized by an equivalent basefmanglex valued impulse response of
length@ + 1:

Q
hiu] = i g6lu—ql, hig €C, (5.48)

q=0

where the real and imaginary parts of the channel coeffigign} are distributed according to a zero mean Gaussian
probability density functioPDF) of variancer,ﬁ’q. Moreover, the channel realizations for different pather differ-

ent users and for different slots are mutually independiatassume additive complex noise at the receiver to model
intercell interference as well as thermal noise within #eeiver radio components. We assume white Gaussian noise
with circulary symmetric complex Gaussian distribut@X (0, P,). Without loss of generality, we assume equal noise
powers among the mobile statiols.

Signal to noise and interference ratio

In order to establish a scalable SINR metric let us first itigage the maximum available signal power at the receiver
output®. This optimum is obtained by thraaximum ratio combiningVIRC) principle. The power gain of the resulting
impulse responsé;[u] * gi[u]) is defined ag, = Zquo |h 4|22 Then, the signal power of usérin the MRC
CDMA system can be written as:

L

P, 5.49
Ck ks ( )

Ps = xry,

wherey, P, andC}, € M, denote the spreading factor, the total transmit power af kised the number of different
data streams. On the basis of, e.g., [36] a linear exprefsidhe interference power along:

Ky

P=Y (1-v)rP, (5.50)

{=1

can be obtained by normalizing these interference powepooents to the product of channel gajnand transmit
power ;.18 Hence, the SINR expression for tig users that are active in time slotan be obtained from e.g. [36]
and is given as:

XTkC%Pk
(= vy P+ Py

Ve = (5.51)

The numerator includes the signal receive power accoufintpe transmit power per strea@th, the spreading
gainy and the channel power gaiy. The denominator introduces the noise powgind ther based expression for
the interference through all, streamg1 — v)r, P, from user/. As the considered Walsh codes are strictly orthogonal
in synchronous use, inter-symbol interference and irtteas interference equél — y)rkclePg.

14 standardization documents refer to this time instance agransmission time interv[T ).

15 The extensions to different receive noise levels in all sase straight forward.

16 Confer with publications like [32, 33, 34] where comprelieasSINR discussions do not include the adaptive receiverfilt

7 For details on the distributiof’.(r) we refer to [24, 35]

18 1n general any coupling function that fulfills the propestiaf positive semidefinitnes monotonicity and scalabilgydamanded
in [20] can be used as long as the outage expressions in aB4)e evaluated.
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Channel outage probability

The outage probability can be formulated through the SiNR

Tout = Pr (’yk < fy};‘*’) . (5.52)

It can be seen from (5.51) that this probability depends uperchoice of all transmit powei®,, ¢ = 1,..., K;.
For constant choices df, the authors in [25] have derived a way to compug for general fading channels. For
non-constant power allocation, i.e.,fast link adaptaéisperformed in HSDPA, the we refer to [23, 26].

FEC coding
Theorem 5 introduces the wording of the 'noisy channel cpdlireorem’ as it was called in [37]:

Theorem 5.For a discrete memoryless channel with the correspondin@y;.) value and an input alphabet;, of
cardinality A, there always exists a block code with block lengthand binary code ratery, 1d Ay, < Ro(~y) in bits
per CDMA channel use, so that with maximum likelihood deapthie error probabilityrpe 0f a code word can be
expressed as:

Frpe < 9—neq(Ro(vk)— Ry 1dAg) (5.53)

The theorem was formulated for ratBs 1d A, < Ro(7x). Throughout the remainder of this work we will implicitly
assume the trivial continuatigiye < 1 for Ry, 1dA, > Ro (7). For derivations and a compact proof of the cutoff rate
theorem we refer to [37, 38, 39]. For SINRR and a modulation alphabét;, = {as,...,a,} of cardinality A, the
results from Section 5.3.2 and the derivations in [40, 4ThpoteR, as:

o Axl A 1
Ro(vk) =1dA, —1d |1+ . Z Z exp (_Z s — am|? 'yk>] . (5.54)
m=1 {=m+1

Despite certain efforts in the literature the cutoff ratedtem has not yet been formulated explicitly for turbo-akszb
convolutional codes [42, 43]. For this class of codes thiighly relevant in HSDPA settings we introduce the concept
of equivalent block lengths. L&® be the interleaver length between inner and outer code imeatenated encoding
system, i.e., the number of information bits per packet ipstiesn with chip rate?, :

R.
B = Ry 1dA; Cy YXT. (5.55)

Then the performance of the turbo decoded convolutiona aod very good approximation equals the performance
of a block code with block length:

Teq = BegIn B. (5.56)

The logarithmic dependence can be deduced from informét@oretic results [44, 45]. The parametgy, in (5.56)
can be used to adapt this model to the specifics of the emptoyled code. For each block of lengtll, Theorem 5
applies. The packet error probability therefore can beesged by (5.53) through the Bernoulli formulation:

B

1 — mpe = (1 — Tpe) =1. (5.57)

Validating the derived expression Fig. 3.3 and Fig. 3.4 8] pmpare (5.57) with link level simulations of an industri
ally deployed turbo-code [46] and demonstrate the supetbmimetween theoretical model and practical application.
Equation (5.57) thus can be regarded a very valid model p#rformance of turbo-decoded convolutional codes.

HARQ protocols

In general a large variety of packet combining techniquesf@n hard decisions [47, 48, 49] or soft channel outputs
[50, 51, 52] have been proposed in the literature. For thaedege will focus on Full Incremental Redundancy meth-
ods. Thus, the system operates with variable code ratesdhdte obtained through e.g., rate compatible punctured
convolutional codes [52] or punctured turbo codes [53]. Bdie the total number of bits per packet. Then the code
rate in themth transmission is given by:
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B 1 1
R = — = —Ri[1] = —Rx. 5.58
k[m] 5 —Ri[l] = — R (5.58)
Thus, the cutoff-rate theorem directly applies to thih retransmission when accounting for the resulting ratbef
FEC code. The packet error probability of an IR HARQ in thth transmission thus can be written as:

B

mpelm] = 1 — (1 9 Bueqln B(Ro(y)— % Ri ldAw) PP (5.59)

The above expressions (5.59) extend the formulated cudtdflvased modeling of FEC codes to the case of hybrid
ARQ protocols. With these results we can now derive the gidiba f,,[m] that it takesm transmissions to decode

a packet error free, i.e., the description of the error cdyers that was proposed in Section 5.2. The probability
fm[m] therefore is given by:

fm[m] = < ]f[ Tpe [m’]) (1 — mpe[m]) . (5.60)

This distribution features an important property that gixeason to a prominent approximation:

Lemma 1. For asymptotically large block lengtts the probability f,, [m] can be written as a unit impulse:

lim f,[m] =0[m —m*] = (5.61)

B—oo

1 for m = m*,
0 else

The corresponding proof is given in detail in [23]. Due to thst asymptotic convergence of the exponential function
the limit provided in (5.61) can be used as a good approxamdtir f,,,[m] even in settings with large but finite block
lengthsB and is considered valid for the remainder of this Section.

MAC scheduling

This section will present the means to include a given MACesiciting strategy into the cross-layer system model.
From the large variety of time domain scheduling algorithwesconsider the three most prominent ones in their basic
versions to exemplarily demonstrate the modeling appremphoposed in this section.

Round Robin schedulinghe Round Robin approach schedules the users one aftereanoth predefined order.
Within every round each users is granted access to the chance. The strateg§ containing the users that are
scheduled to the time slétcan be formulated as:

t—k

The probability of being selected by this scheme therefereompletely determined by the number of uskrsn

the system. As the scheduling decision is independent othla@nel realizations so are the probabilities of being
scheduled and of facing a feasible channel. Hence, thentiasi®n probability can be written as their product and
reads:

1

7 (1= Tou). (5.63)

Ttx =

Proportional fair schedulingDefining the constant scalar weiglttss € [0; 1] that allow to trade multi-user gain for
fairness we investigate MAC scheduling with the decisida:ru

Spr = {k Th (1 — (1 - %) ﬁpf) > 7y (1 — (1 - ﬁ) ﬁpf) , VO #£ k;} (5.64)

The substitutiorBys , = (1 - (1 - ﬁ) ﬁpf) yields a more compact and more convenient form of the prapaat
fair scheduling as:

Spf = {k |7"kﬂpf7k > T@ﬂpfl, A4 7§ k} (5.65)
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As Bpr 171 IS a linear function of the random variabtg its probability density can be computed througltr) as
’—k) . The probabilityrs now can be written in terms of the derived densitysgf;

1
B e  Bore
St () 1 ()
Tg = —fr | —— F., | — dry.. 5.66
>l ﬁpf,kfA Btk g “\ Bote g (5-66)

L#£k
Hence, the transmission probability can be expresseddhrthe productr = (1 — mout)7s.
With these extensive preliminaries on the exemplarily end®lAC scheduling approaches the description of the
lower layers througlf,,,[m] in (5.60) can be used to formulate the probabififyn| that it takes slots to transmit a
packet error free. Employing the tight bound (5.61) as it pl@ven in Section 5.3.2 yields :

. «(n—1
fn[n] = fn\m* [n] - (1 - th)(nfm )W{)ZL (m* o 1); n<m”. (567)

From this the QoS parameters throughpptand outage delay; can be obtained through the properties of the
probability in (5.67). The upcoming paragraphs will dettire corresponding details. To this end the expectation of
can be obtained as:

= n—m™),_m* n—1
En] = ) n(l —m) """ my; <m*_1),

n=m*

_m (5.68)

The corresponding derivation through the calculus of hgpemetric functions [54] can be obtained from [55]. With
this central parameter of the probability in (5.67) the dé&éin of the throughpup from (5.21) can be computed as:

1 B

Pk = E[TL] T. (569)
B denotes the number of information bits per packet and cawimpated along (5.55) through:
B = Ry 1dA; C &T. (5.70)
X

With (5.22) af,,[n] based definition of the second QoS parameter delay was gieough the expression in (5.67)
ther, outage delay;, thus can be written as:
/7]
T, = argmin7’  S.t.: Z faln] > 1—m,. (5.71)
a n=1
These equations conclude the derivation of the bottom-gfesy model. It can be easily verified that this model
complies with the made propositions in Section 5.2.

Optimization

Within this Section the cross-layer optimization in HSDRAdrmulated in accordance to the considerations in Section
5.2 as a resource minimization problem subject to a set dftcaints on the QoS parameters throughpuand delay

Tr. The cross-layer optimum mode of operatd” and the corresponding optimum transmit powErstherefore

are the solutions to the minimization program:

e > Py vk

5.72
TR < T]grq) VEk. ( )

{M*, P*} = argmin | P||; s.t:
{™m, P}

Due CLARA compliant nature HSDPA system models as introdwd#ve the structure from Subsection 5.3.1 can
be adapted through two modifications:

e Replaceroy]i] in the inversion o ®) by (1 — my|i]).
e Use the HSDPA model components or corresponding measutsrfeerbuilding the look-up-table required to
solve the mode optimization in the iterative scheme.

This provides the converging optimum scheme for HSDPA.
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Scheduling

In [56] techniques have been proposed to use the crosskaperledge of CLARA and her ability to control QoS
for MAC scheduling purposes. Thesmss-layer assisted scheduli(@LASS) algorithms consist of a sequence of
hypothetical scheduling sets with following feasibilitgst through CLARA. These techniques will be used in the
upcoming evaluation to demontrate CLARA benefits in termsystem capacity as well.

Evaluation

The performed HSDPA cell level evaluations of the proposesszlayer optimization technique shall support the
theoretical elaborations from above and demonstrate thécapility of the optimization, as well as the resulting
system enhancements. The underlying simulation envirohimeestigates 1000 longterm settings, each consisting
of 5000 time slots of length". For every longterm realization, user locations are gaadreandomly, assuming a
uniform distribution of users in the cell. The resultinglpédsses, i.e., the inverse of the varlano§§ are derived
from the distanced between MS and BS using the Hata pathloss model as introdngaa, 31] and referenced in
[57]. For every time slot in a longterm setting, channel Giorints are generated to fulfill the made stochastic model.
With the metrics described above, the scheduling algostara implemented and decide which user is granted access
to its channel for every channel realization. An induslyialeployed FEC turbo code is used, providing the ACK and
NACK messages to the fully implemented HARQ protocol. Rdaug all relevant parameters allows the evaluations
of the QoS compliance, the power savings and the capacityomements which are possible through the proposed
technique. The numerical values for the used system conmp@aee displayed in Tab. 5.3. In addition to the structural
settings of the model in Section 5.3.2 the preparation ofckgtaransmission is assumed to cause a deldl;.oAs

x| v |Th—=T5| Tu |Qlay@4QAM|ay @ 16QAM| T+ |Bne| CQI | Bpt
16[0.1| 10 ms |100 ms| 3 |[3,4.8,6] dB | [2,3.8,5] dB |0.01| 32 |[1 — 30]| 1

Table 5.3.Numerical parameter values used in simulations

the standard requires the HARQ implementation in the péarifmtm mentioned in Footnote 13 withyax = 4 every

4th transmission faces a longer delay accounting for thedap time to the RNC and back. We assumed a receiver
noise level of—95 dBm and a maximum transmit power b6 W, which together with an antenna gain i&f dBi,
results in areffective isotropic radiated pow€EIRP) of60 dBm.

5.3.3 QoS Compliance

In a first step, Fig. 5.6 proves the QoS compliance of the dags scheme. Serving three users with QoS demands
on throughput/delay gR00 kbps /100 md, [500 kbps /100 mg and[1 Mbps /100 mg respectively, the simulation
of 1000 user settings, i.e., location of the users in the pedlulted in 1000 values for the throughput, obtained from
averaging the data rate over the evaluated 5000 channglataths. The lines in Fig. 5.6 show a histogram of these
throughput realizations, revealing a superb match of requént and de facto measurement. The constructed system
model allows the algorithm to precisely control the QoS peeters, allowing for the targeted power minimization.

In the vast majority of all user settings, the MT schedulifgpathm does not allow the QoS true serving of
all users for which the corresponding MTS curve is missing.the delay demands in this setting are implicitly
accomplished by fulfilling the throughput demands, the&sponding curves are omitted here.

5.3.4 Power Advantage

Because the philosophy employed to derive the proposedi@olwas the overall minimization of transmit power,
this section elaborates on stochastic descriptions ofréresinit power necessary to serve the mentiohesers

with their demands. Note that any powEBr < Pnax iS only possible by the above means of QoS management,
i.e., top-down cross-layer optimization. Reference taphes will therefore always employ the full available tranits
power. Against this background Fig. 5.7 displays the cutivdalistribution of the EIRP measured during the above
mentioned simulations. The cumulative distribution réveat the above-discussed QoS compliance can be achieved
with significantly less than maximum transmit power in a &argimber of cases. Due to the large scale of path loss,
shadowing and fading effects, the resulting gains are fitgmit. Although using the full available EIRP is a coarse
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Fig. 5.7.Visualization of the sensitivity with respect to mode misaies: Comparison of the EIRP over all users.
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reference, it is a useful landmark, as Section 5.3.5 wilficon However a more competitive reference can be obtained
by providing the required QoS with a suboptimal mode. Examilyl Fig. 5.7 includes the PDF resulting from a
constant mode mismatch in a Round Robin scheme. Indexingdldes with the CQI, the 'mode mismatch’ reference
approach does not select the optimal mode with respectig@)Fut instead selects the mode corresponding to the next
higher CQI value. The dash-dotted line in Fig. 5.7 shows theificantly larger power consumption of the resulting
system configuration and thus visualizes the sensitivithisf performance measure with respect to mode selection.
The increased power demand of the higher mode additionadhgases the channel outage probability, which makes
further power increases necessary. Through this iteratimeection, the PDF shift in Fig. 5.7 significantly exceduds t
SINR gap between neighboring modes. This result providethen strong argument for the necessity of cross-layer
approaches, as this relation is not regarded in converimgle-layer models.



130 Zerlin & Nossek
5.3.5 Capacity Increase

Finally let us demonstrate how the saved power can conéritounaximize the system capacity in terms of servable
users. To this end Fig. 5.8 plots the distribution of the nandf users that can be scheduled with different scheduling
approaches comparing CLARA cross-layer methods as mettiorSection 5.3.2 with MT and PF scheduling in their
basic versions, always scheduling the fisSusers from a prioritized queue.

Distribution Fi (K)

CLARATD
CLARATCD

O I I L L
2 4 6 8 10

Number of servable use#s

Fig. 5.8.Demonstration of the possible capacity gains, obtaindistaigh cross-layer assisted scheduling.

Fig. 5.8 shows the resulting distribution obtained from $iraulation of 1000 scenarios. Assuming a queue of
15 users with descending priorities, their location as wellhesr QoS requirements for every scenario are randomly
chosen. Locations are distributed uniformly across thieni#h a radius ofl.5 km, throughput requirements have uni-
formly distributed square root in the intervalgf[(); 12.8]Mbps and the latency requirements are uniformly distridute
in [20 ms;100 ms].

With the drastic power saving obtained through the propasinization, many time slots allow the additional
scheduling of users on free CDMA code channels. For the diadiic scenario, the top-down cross-layer optimization
of the HSDPA link allows us to double the median of the systapecity, even with respect to the already optimized
CLARA TD scheme. This results illustrates the enormousmt@dkof cross-layer assisted schemes to the scheduling
unit of HSDPA systems.

5.4 Conclusion

This chapter has introduced a generic approach for the d@prdross-layer optimization of communication systems.

It bases on an iterative detection of the system’s outagleafitity and relies on a series of table look-ups to obtain

the optimum solution at an absolute minimum of computafionat. Because the initial formulation was based on an

abstract set of mathematical properties the evolved scltambe proven optimum for a wide class of systems. With

the application of this scheme to EGPRS and HSDPA the la#tgrgs this chapter has demonstrated the enormous
potentials the presented technique has in these promitadatsf the art systems.
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6.1 Introduction

Recently, increasing demand for fast Internet access, ndtimedia services, surveillance networks, sensor ne¢svor
and simple and powerful automation and monitoring netwdhesdevelopment of new and feasible signal processing
techniques associated with faster and low-cost digitalaigrocessors, as well as the deregulation of the telecom-
munication market have placed major emphasis on the valirvestigating hostile media, such pswer line(PL)
channels for the last meters and last miles application dding high-rate data transmissions. The use of PL channels
is very promising because about 50% of all investments ineleeommunication infrastructure is needed for telecom-
munication access networks. Moreover, 95% of residenciédaildings around the world make use of electric circuits
for energy delivery. As stated in [1fhe Last meters and last miles access markets are still enphery slowly due to

the daunting cost of home networking and cabling installatiPulling wires in an existing home is difficult, while it is
not a solution amenable to the mass market. Most consumersravilling or cannot afford a large-scale residential
or building rewiring, especially in the brick/concrete hliings even in developed countries. Then, apart from some
exceptions, many vendors and service providers have pat fireus on the so-called “no-new-wires” solutions that
eliminate the need for wires pulling.

Then, digital communication through PL channels is a vemppetitive alternative to a number of competing
access network technologies, ranging from copper enhauédiggtal subscriber line variationge.g. ADSL, HDSL,
VDSL), cable TV/ modem (e.g. DOCSIS), wireless solutiorjsgatellite communications fibre to the cur(FTTC),
fiber to the hom&FTTH), and various combinations between fibre/twisted (eg. FTTC combined with VDSL) or
coaxial qiybrid fibre coaxial HFC).

In this regard, the aim of the research in ff@ver line communicatio(PLC) field is to provide last miles and
last meters networks as reliable and simple as possible &b tine increasing demands for bandwidth in residential,
industrial, and commercial facilities in metropolitan@ases well as rural areas. In fact, the access networks are ver
important for network providers because of their high caststhe need for a direct access to the end users/subscribers
Therefore, the main investigations for providing it focus@mmunication systems able to provide remarkable im-
provementin terms of achievable bit-rate with as low asiptssosts for applications where the use of fibre or other
well-known medium is a very expensive solution. As a resattent investigations have positioned the PLC technology
as one of the greatest opportunity to develop simple and golx@®mmunication systems with flexibility to support
narrowbandandbroadbandapplications, such as surveillance, automation, telémetnd monitoring systemjgh
definition televisiofHDTYV), voice overPLC (MoPLC), fast internet access and all other kinds of imdtlia services
not only for residential, industrial, and commercial féigh, but also for all kinds of vehicles that make use of powe
lines for energy delivery.

Recent advances in PLC field have resulted in the advent cflpmepressive, and promising PLC technology
(see Fig. 6.1) that will provide in the near future way to @zene the PL disadvantages and, consequently, guarantee
the widespread use of PL channels farrowbandPLC (N-PLC, NPL or NaPLC) anttroadbandPLC (B-PLC,
BPL or BoPLC) data transmissions. For instance, nowadays ssmmpanies are offering PLC modems with mean
and peak bit-rates around 100 Mbps and 200 Mbps, respegtared IEEE formed a group to discuss and propose a
PLC standard. However, advanced B-PLC modems will surféspérformance because the capacity of PL channels
can surpass 600 Mbps [3, 4, 5, 6, 7]. Some special schemetutipae for coping with the following issues should
be addressed [8, 9, 10):considerable differences between power line networkltapes and physical properties of
cablesji) hostile properties of PL channels, such as attenuatigmgstional to frequency and distance increases, high-
power impulse noise occurrences, time-varying behavioe-tand frequency-varying impedance, stramgr-symbol
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Fig. 6.1.PLC technology: present and future.

interference(ISl) effects, and frequency selectivityi;) interoperability with other well-established commurtioa
systemsjv) electromagnetic compatibility with other well-estabksl communication systems working in the same
spectrumy) climatic conditions in different parts of the worldi) reliability andquality of servicg QoS) guarantee
for video and voice transmissiondj) security against non-authorized access, @il different demands and needs
from developed, developing, and underdeveloped countries

To deal with these issues, novel and efficient signal praegsdigital communication, and computational intel-
ligence techniques as well as simple and powatigital signal processo(DSP)-,flexible programmable gate array
(FPGA)-, andapplication-specific integrated circu{fASIC)-based hardware have to be researched for the develop
ment of new PLC solutions. It can lead to exciting researohtfers with very promising results for last miles and
last meters applications. In fact, the used of signal psingsdigital communication, and computational inteltige
tools either individually or in combined form can result &liable and powerful future generations of NaPLC and Bo-
PLC systems that can be suited for applications in develafeatloping, and underdeveloped countries. The research
results will provide novel paradigms for overcoming lintiikeas and problems that restrict the widespread use of PLC
technology as a new/old wireline medium.

6.2 Historical Perspective

The use of PL for data transmission date back to 1838 whenrtiedimote electricity supply metering was introduced
and in 1897 when the first patent on power line signaling wap@sed in the United Kingdom [11]. After that, in 1905
applications were patented in the United States, and in i first commercial production of electromechanical me-
ter repeaters took place. Around 1920, the fiestrier transmission over powerlind€TP) by power system utilities
began to operate on high-voltage lines in the frequencyeand5-500 kHz for handling operations management of
the power supply by means of voice. After 1940, new CTP famedtering and telecontrolling of power system was
introduced. Initially, the data-rate was 50 bits/s, andrlétwas increased to 100 bits/s and 200 bits/s. In the pabt an
present days the main purpose of CTP was to maintain the loifigraf the power supply. The CTP under favorable
and unfavorable conditions can bridge up to 900 km with astréasion power of only 10 W [8].

At very beginning of 1930ipple carrier signaling(RCS) started to operate on low and medium voltages power
lines for power system management operations. The usedeney ranged from 125 Hz up to 3 kHz wigimplitude
shift keying(ASK) modulation technique. The frequencies close to thegudrequency allow the information to
flow over the transformers between medium and low voltagésowt the need of coupling measures. The data rates
achieved by RCS was of the order of a few bits per second. L@ashgement and automatic reconfiguration of power
distribution networks were among the most important tagkfopmed by RCS. Among the applications provided by
RCS were the management of street lights and load control.

The advancement of signal modulation technologies, digji@al processing, and error control coding have min-
imized the restrictions of channel imperfections, and tggked signal transmission through power lines. As a result
bi-directional communication was developed in the lates9&8nd early 1990s. The main difference between early
PLC systems and modern ones is that much higher frequenmes substantial reduction of the signal levels are used
on today’s power grid network for data transmission.
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In 1991, the European CELENEC standard EN 50065 was launtiredkes use of the frequency range from 3
up to 148.5 kHz for NaPLC applications with a maximum signalvpr of 5 mW or 134 dBV and rates up to 144
kbps over distances around 500 m. While the main member aff&an Union restricts the use of PLC technology by
imposing lower power transmission level, the USA and Jajmutydess stringent restriction on power transmission.
Also, USA and Japan specify a spectrum below 500 kHz for Na&blications.

With the deregulation of telecommunication market in 1988,development of alternative fixed network access
systems within the last miles and last meters have pushedfdrthe development of advanced NaPLC and mainly
BoPLC technologies. Soon after, the standard HomePlug a9imtroduced. It was developed by the HomePlug
Alliance formed in 2000 by 13 founding members [12]. Thiswstard is one of the most famous power line communi-
cation technologies and it supports up to a 14-Mb/s trarsorigate. New HomePlug AV [12], which was finalized in
2005, is expected to have the data rate of 200 Mb/s iptysical(PHY) layer (100 Mb/s in thenedium access con-
trol (MAC) layer). HomePlug AV provides both connection-orieshand contention-free services based on periodic
time-division multiple acce9§ DMA) and connectionless services basedcarrier sense multiple-access/collision
avoidancg CSMA/CA) technology, which is used in HomePlug 1.0 MAC [13]

In January 2004, th@pen PLC European Research Allia€PERA) [14] started an ambitious project to develop
a new PLC technology generation as an alternative for actetsgorks. Not only, entities from European countries
joined this project, but also entities from countries algstEurope, such as Brazil, collaborate. The main objecfive o
OPERA project is to perform the necessary research anda@weint to overcome any remaining obstacles, allowing
PLC operators to provide competitive PLC-based broadbandces. Their final results are expected to the end of
2006.

In 2005, ES 59013 draft standard from CENELEC allocated theéMHz to 12.7 MHz band to the access systems
and the 14.35 MHz to 30 MHz band for in-home ones.

After 2005, an IEEE working group started the developmeitsthndard for MAC and PHY layers specifications
for BoPLC [15]. This standard aims at the development of adsed for high speed>100 Mbps at the PHY layer)
communication devices through power lines, so called Bvaad over Power Line devices in the frequency range
between 1 MHz and 100 MHz. This standard will be used by afis#a of BoPLC devices, including BoPLC devices
used for the first-mile/last-mile connection ( distanee4500 m to the premise) to broadband services as well as
BoPLC devices used in buildings for LANs and other data @aibns ( distances 100 m between devices).

Additionally, this IEEE P1901 working group is focusing dretbalanced and efficient use of PL channels by all
classes of BoPLC devices, defining detailed mechanisme#éxistence and interoperability between different BoPLC
devices, and ensuring that desired bandwidth and qualisgfice may be delivered. The standard will address the
necessary security questions to ensure the privacy of canwations between users and allow the use of BoPLc for
security sensitive services. It is also the intent of thieréto quickly progress towards a robust standard so th& PL
applications may begin to impact the marketplace. The stahdill also comply with EMC limits set by national
regulators, so as to ensure successful coexistence wighess and telecommunication systems.

Among the reasons for putting a great research effort on Bis@m viability, the following advantages should
be mentioned [9, 2, 16, 17, 18): PLC can provide an extensive coverage for last mile andnfeger applications,
since the power lines are already installed almost everyavAdiis is advantageous especially for substations il rura
areas where there is usually no communication infrastraciuailable for use. while PL channel is present in more
than 95% of households around the word, other broadbanuhali¢es such as xDSL and cable modems have only
reached less than 10% households, even though 60% and 15%s#folds in developed and developing countries are
already connected to the Internet. In fact, The biggestleaipy of existing power networks makes possible the asces
of the Internet to most of the population and it makes posdtié proper services of the electric energy utilities that
depend on data communication, besides adding value teeitfriel assets (wiresi;) the communication network can
be established quickly and cost-effectively because lizasi the existing wires to carry the communication signals
Thus, PLC can offer new cost-saving methods for remotelyitodng power uses and outages as well as other
NaPLC and BoPLC applicationsi) PLC is easy to install and use - no more wires are neededpjugtin. High
transmission rates, multiple Mbps, are right now availaiolé more than 100 Mbps are possible. Together with secure
data encryption you can utilize your existing power souareail your communication needs, including TV quality
video, streaming audio and broadband multimedia.

However, the following disadvantages have discouragednyestigation of PLC technology for the last few
decades [19, 9, 2, 16, 17, 18, 20):ithe PL are noisy environments for data communications duseteral noise
sources such as electronic-based equipment, electricarengower supplies, fluorescent lights and radio signal
interferencesii) past contributions present limit theoretical channelacdty for low-, medium-, and high-voltage
PLs.iii) communications over PLs are severely restricted by theofissvitches, reclosers and sectionalizevs,
the attenuation and distortion of signals are immense dubdaeasons such as physical topology of the power
network and load impedance fluctuation over the power liBesides, there is significant signal attenuation at specific
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frequency bands due to wave reflection at the terminal poihtnsidering the physical and nature of PLs, security
concerns have been addressed, because PLs irradiateerabgidamount ofelectro magnetic interfereng&MI).
Then, an unauthorized person can intercept the data infamearried by power cable if an appropriate encryption
technique is appliedi) the lack of worldwide regulation for BoPLC and NaPLC to caretee the interoperability and
low-cost PLC systems working in a shared medium with othiectanmunication technology working in the same
frequency range such as mobile communications, broadgasgtiannels and military communications.

Recent initiatives and great research efforts show that BL&&coming more a reality than a promise. In fact,
recent contributions on this field will lead to very poweréud cheap last mile and last meters solutions for medium-
and low- voltages PLs of distribution networks of power eyss as well as electrical circuits in residential, vehigula
and building facilities. As a result, one can predict that tiew generation of PLC modem with data-rate in the PHY
layer up to 400 Mbps will come.

Case Study: PLC in Brazil

Since a long time ago, the use of power line for data commtinitehas been restricted to the NaPLC applications,
such as power system protection and relaying by utility canigs from Brazil. These companies have focused only on
electric energy market because their administrators acdhmore interested in keeping their main energy market than
data service. In fact, the commercial use of PLC is a novelnising and challenging paradigm whose advantages
few administrators of electrical energy utilities are agvaf. Such advantages are the increase of portfolio of servic
venue, profit, and client’s fidelity. In fact, the utility cqranies can increase considerably their profit by offering
communication service for their clients and customs. Faggand 6.3 illustrate the use of indoor and outdoor energy
distribution network for BoPLC and NaPLC applications.

NaPLC and BoPLC infrastructures for voice, video and datiits in the low and medium voltages PLs can be
provided by electrical energy utilities demanding lowerdstment than that required by well-known technologies
such as wireline (cable TV, xDSL, fibre cables), and fixed- arudile- wireless systems (WiMax and satellite com-
munications) to offer the following services [22):Fast and secure surfing on the Internet, e-commerce, eaméil
e-bankingji) powerful telephone connection using the internet thagrsfSecurity and good speech quality. Sendind
and receiving fax messages is also possiblesmart home applications with remote maintenance and urséngon-
trol of internet enabled household appliances like refatms, heating systems, smoke and fire alarm systams;
surveillance systems with both visual and motion detedtoss can be monitored by you and a security serwge;
health care servicesj) online reading of utility meters for flexible and easy upetate billing; andyii) easy PCs,
telephones, and multimedia connection devices by simpilggihg in the existing electric socket.
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Fig. 6.2.Access PLC networks [126].
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Fig. 6.3.Residential PLC networks [126].
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As a result, the electrical energy utilities will start teplute the last mile telecommunication market with Telcos
with one remarkable advantageapillarity in the last mile Telecommunication infrastructure capillarity is the key
connectivity problem to be minimized in the last mile enwingent and the electrical energy utilities have it available
because electricity service is nearly ubiquitous (the tical coverage from PLC is almost 100% in most of devel-
oped countries) and have higher electricity penetratiam tielephony infra-structure. In a developing countryg lik
Brazil, a social program from federal government namieatz*para todoglight for everyone)” [23] will guarantee
electrical energy infrastructure for, at least, 98% ofdescies and buildings until 2008. As a result, households in
metropolitan and in rural areas will have electrical infrastures available not only for energy delivery, but alsp f
data communication.

In Brazil, as well as around the world, the main competitorsoPLC are [24]i) the xXDSL technology with the
broadband last mile technology leader being the cukeaymmetric Digital Subscriber LiNADSL), with average
bandwidth of 2 Mbps for 6 km distanc@) cable networks which have the capacity to deliver signifityahigher
bandwidth to the end user. It presents a relatively limitexecage area and subscribers base. To increase the number
of customers, investment should be made to redesign exisétworks to allow higher connection density and expand
the coverage area; aniil,)wireless broadband technologies that have a good poteuatiticularly in low-density
areas. The key advantages are fast installation and the&ddllity for the end costumers. However, market solutions
depend upon the availability of sufficient spectrum and #gmessary investment on transport systems and Fiber Optics
backbones.

Regarding the use of BoPLC technology in the Brazilian nétva@cess telecommunication market, the following
issues have to be taken into account [24{he market is dominated by a few technology patterns. Asalt,eBoPLC
proponents can expect to face strong barriers when tryirtgt@lop partnerships with incumbent Telco¥;many
end customers do not differentiate one telecom service fnother. Then, BPL in competition with a traditional
telecom strategy may mean lower prices. This competition raault in lower margins for suppliers, which is not a
good business modadli) there are barriers to new entrants because existing glayatrol most of the distribution
channelsjv) according to recent investigations, Telcos are not readyotnmercialize the full potential of telecom
convergence. Then, BoPLC can be competitive dependingdhmpanies’ strategies, even in the Telco homeland;
andv) a small number of big organizations using few access tdolyies such as xDSL, HFC, wireless, FTTH and
competing over cost leadership strategy.

The widespread use of PLC technology in developing cows)tsigch as Brazil contributes to minimize the distance
from people digitally inserted in the world from those dadjiy excluded. Additionally, a PLC standard for developing
and underdeveloped countries sponsored by Brazil couldastiand motivate the start of high-tech companies in
Brazil to produce modems, systems, and accessories for 8@Pd NaPLC. Then, the development of a so-called
“Brazilian PLC standard for BoPLC and NaPLC” should be a ptydor those responsible for the technological ad-
vances in access networks because NaPLC and BoPLC areajesatmhmunication niches for Brazil. Unfortunately,
the initiatives or research efforts on this field in Brazié dar from reaching this objective. Actually, the Brazilian
efforts towards PLC technology can be summarized as follows

i) the use of PLC technologies developed in USA and Europeet.C technologies are not related to any
kind of P&D for PLC system improvement as well as developmeisually, USA and European PLC system are
installed in proof camp for utilities companies to verifyethtechnical viability and in poor and distant communities
to demonstrate that PLC system can help them access thel digiitents through internet as well as offer other kinds
of data communication services. The main motivation fos ikithat PLC technology is a very promising one in
terms of cost and performance to digitally assist rural aathied communities or even for those that do not have
telecommunication infrastructure available. In this relga@everal Brazilian companies joined the Brazilian forum
so-called “Forum Aptel de PLC/Brasil” [25], which aims amnfienting and encouraging the widespread use of PLC
technology in Brazil. This forum collaborates with the Epean PLC forum through the OPERA project in order to
verify the viability of PLC business in Brazil.

ii) the analysis of PHY and MAC layers of PLC system at univessitbasically analysis of single- and multi-
carrier digital communication systems suited for NaPLC Bo@LC applications have been analyzed. Additionally,
implementation of PLC modem based on USA and European e@uipis being carried out for indoor and outdoor
PLC applications. It is worth mentioning that a chipset ldase a OFDM system for BoPLC is under development at
Federal University of Juiz de Fora, Brazil, that tries toet@thto account the main features of the PL channels found
in Brazil. The expected results is a system capable of datigenore than 100 Mbps at the PHY layer. The reason
for this hardworking development resides on the fact theafRhC technology from USA and Europe do not take into
account the characteristics as well as the needs of dewglapuntries like Brazil.
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6.3 Channel Models

The development of a modelling method for PL channels shfmlilol the following principles:i) The propagation
model has to be as simple as possible and use few cable pesderteach cable typé; the model input data could
only be extracted from the network topologyii) the development of a measuring method is required to aealyz
totally unknown networksiv) experimental verification of the propagation and the meagunethods have to be
carried out under different conditions and compared witteotnethodsy) the propagation model and the measuring
method have to be based on easily calculable/measurabiétips related only to network terminals rather than mne
(hidden) nodes within the network; ang the elements needed to make the propagation analysisaseftaol have

to be modeled by the propagation model.

The power distribution network was not designed or evemaigtd for low- or high-date communication, with
numerous bridges, splits, taps, branchings, etc., as wallarge amount equipment on route such as capacitor banks,
relays, reclosers, sectionalizers and transformers. Tlagailability of a model for a precise description of signal
propagation along PL lines has conducted to pessimisticlasions. The PL channels are impossible to be modeled
priori and, consequently, do not allow the superposition of effelthey have very little or no determinism embedded
in it, and consequently, it is not reliable as communicatioedium for high-speed data transmission [20]. Despite
that, research efforts for a better characterization of finaels have been carried out around the world offeringinove
results that dismisses several arguments against PLCwiheell-established approaches for modeling PL channels
are as follows:

i) top-down this approach considers the PL communication channel dasci& box from which the PL transfer
function is estimated. Basically, channel measuremeetpiavided in order to estimate the frequency domain para-
meters from the PL channel. Based on tbe-downapproach, the so-called multipath model, which is a wetvmn
model offering the frequency response of indoor, outdawd,lroadband PL channels is given by [26]

H(f) =3 | Gullf.d) Ailf. di) exp(~j2m frs). (6.1)

whereG;(f, d;) refers to the weighting factor in thigh multi-path,4;,(f, d;) is the attenuation term produced by the
ith multi-path,d; is the distance of thigh multi-path,7; is the delay portion in thgh multi-path, andP is the number

of multi-paths. The typical attenuation of three PL chasrmecupying the spectrum ranging from 0.5 to 20 MHz is
depicted in Fig. 6.4 in which each curve corresponds to Plhicblbwith different distance betweegceiver(Rx) and
transmitter(Tx). One can note that the attenuation profile depend hangiby the frequency range as well as Tx-Rx
distance. Also, deep narrow-band notches caused by nautgflections at impedance discontinuities appears in the
transfer function. These notches can be spread over thegneg range.

It is worth stressing that the multipath model is quite ajppiatte in the case of very simple topologies, such as a
cable with a single branch and the physical reasons for tkergbd results (cable loss, reflection, and transmission
factors) can be easily identified. In real network topolsgighich are always more complicated, a back-tracing of
measurement results to physical reasons will generalfydut to be impossible.

Regarding NaPLC applications, a very interesting PL cheamglel in the frequency range of the CELENEC
standard EN 50065 is presented in [27, 28].

Atenuagéo (dB)
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Fig. 6.4.Frequency attenuation of three typical PL channels.
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ii) bottom-upthis approach describes the transfer function of the pdweby using scattering parameters matri-
ces or four poles impedance or admittance matrices. Thighmeduires a complete knowledge about the components
of the networks to determine the elements of the matrices.di$advantage of such approach is the large number of
parameters to be manipulated. Based on the fact that indooh&nels are simpler than others and have their para-
meters well-known, théottom-upapproach is widely used for modeling them. Regarding thg@gch in [29]-[30]
and [31] a deterministic model grounded wilticonductor transmission lin@VTL) theory and modal decomposi-
tion is presented for indoor PL channels that allows one toputea priori and in a deterministic fashion the transfer
function of any PL link by using two-port transmission me#$ and it demonstrates the viability of PL channels for
BoPLC applications in indoor environments. In [6] a PL chelnmodel based obottom-upapproach is introduced to
precisely model overhead MV power line showing that MV caljeesent a theoretical channel capacity higher than
600 Mbps.

PLs connect the power generation station to a variety ofooosts widespread in a area. Power transmission is
done using varying voltage levels and power line cablesvbltages levels are interconnected by transformers. Based
on the voltage levels at which they transfer, power linesdéstnguished as high-, medium- and low-voltages.

6.3.1 High-Voltage (HV) Lines

High-voltage lines connect electricity generation stagito distribution stations, bridging distances from sal@ozen

to several hundred kilometers. The voltage levels on thess lare typically in the order of hundreds of kilovolts
(110 — 300 kV). Voltages over 300 kV are namedtremely high voltagéEHV). The EHV and HV levels establish a
pure transmission network, since no customer premisesiaelg connected to the lines.

For these levels, the PLs present energy losses due to @pelatitkage, and corona effects. The MV cables have
been used only for narrowband communication system operéatithe frequency up00 kHz for protections and
restricted supervision and operation of power systemsT8¢ limited use of these channels is because the length
of HV level cables are up to 500 km and the attenuation in theddkles increases remarkably with frequency
as well as distance, the high-cost and difficulty for couplinodem PLC in HV cables. The HV lines are very good
communication channelsin the sense that almost no braachebserved on them and a small number of disturbances
that strongly affect the broadband and narrowband comnatiait systems are noted on them. The CTP is the only
well-known communication system developed to transmia datHV lines.

6.3.2 Medium-Voltage (MV) Lines

The MV cables connect the distribution stations to pole ntedtransformers. MV level cables are used to supply
electric energy to rural areas, towns, cities, individadlistries and companies. The nominal voltage levels ateeof t
order of a few kilo volts {0 — 30 kV) and they run over distances of the order of a few kilonge(6r25 km).

In developed countries, most of the MV level cables are ugrdeind lines, while in other countries most of these
cables are overhead ones.

Over MV cables, two types of noises are dominant [3RFolored background noise aiigl narrowband noise.
The former is the environmental noise, which is highly defe on the weather, geography, above ground height,
etc. One has to note that corona discharge [33] is a majorecafusackground noise, especially under humid and
severe weather conditions. Therefore, a PL appears as@smisce by itself due to corona discharges on HV lines.
The latter is the interference from wireless devices andiges operating in the frequency range of BoPLC systems.
Narrowband noise varies with time and place.

The channel capacity of MV cables are higher than the oneebddén the low-voltage cables, because the former
cables present lower number of branches than in the lates. dn fact, the characteristics of the MV for broadband
communication systems are better than those ones of lot@gepower lines.

MV networks can be used as a distribution network conneeingmber of PLC access networks to the backbone
as well as a solution for the distribution network [34, 35pvitever, the use of the MV lines has been limited to N-
PLC because past research has considerably underestithatitboretical capacity of these MV lines. Recently, in
[6] it was demonstrated that the theoretical channel cépatMYV lines is higher than 600 Mbps. Therefore, the MV
lines are very competitive to provide last mile access feidential, comercial, and industrial facilities. In thegard,
research leading to promising last mile access systems bageLC is being developed to introduce in the near future
new generations of PLC systems operating in distances up km2and delivering some Gbps with a good tradeoff
regarding performance and cost.
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6.3.3 Low-Voltage (LV) Lines

The low-voltage lines connect pole-mounted transformensdividual households as well as appliances and elettrica
equipment in predial, residential, industrial and comriaelectrical circuits. The voltage levels on these linesat

the order of a few hundred voltsc(400 V) and these run over distances of the order of a few hundredrmerhe
typical supplies radiuses of a feed point (pole-mountausfiarmers or low voltage transformer station) are froif

to 500 m and that the number of users connected to a LV cable is bet@@and 80. Recently, the LV cables have
appeared as a new frontier for last meters applicationsusedhey are in more tha % of residential, commercial,
and industrial facilities around the world. Additionallyne can note that all kinds of vehicles (car, airplane, ship,
aircraft, etc) own LV cables for energy delivery in thkernating current (AC) anddirect current(DC) forms.

Due to the fact that the attenuation of PL channels becomesderably high as the distance from thensmitter
(Tx) to receiver(Rx) and the frequency of data transmission increases, aothers have advocated that outdoor PLC
system (from transformers to individual households) sthadcupy the frequency range from 1 up to 10 MHz for
BoPLC, while the spectrum over 10 MHz should be used for imdRiaC system (inside residencies and buildings).

Although the PLC channels are time-varying, most of themhmoonsidered time-invariant during the interval of
symbol transmissions [29, 30, 31, 26]. Recent investigatare focusing on time-varying behavior of PL channels,
see [36, 37, 27].

6.4 Additive Noise

For NaPLC applications, a good characterization of noieaado is provided in [38] and [28]. The additive noises
model in BoPLC scenarios for last mile and last meters agfitins as well as other environment, such as aerospace,
vehicular, etc is well known from [39]. Referring to [39],e&moise in last miles or last meters low-, medium- and
high-voltages networks is expressed by

(1) = Vogr (t) + vt (t) + Vpa(t) + Ups (t) + Virnp () e=n1. » (6.2)

whereT} is the sampling rate and

o U (1) is the colored background noise with a relatively jpgwer spectral densitfPSD), which is caused by the
sum of numerous noise sources of low power. It covers the aamuation frequency range. Contrary to the white
noise, which is a random noise having a continuous and unifgectral density that is substantially independent
of the frequency over the specified frequency range, theredlbackground noise shows strong dependency on
the considered frequency. In the frequency range above 1, Méizkground noise is below -110dBm/Hz,even
dropping to -130dBm/Hz, and far below the noise level of B@dHz or -90dBm/Hz under 500kHz. As a result,
its PSD can be approximated by a exponential function. lised, for example, by common household appliances
like computers, dimmers, or hair dryers, which can causeidiances in the frequency range of up to 30 MHz.
For residential and industrial environment, the PSD ismgive [9]

PSD(f)=—35+35exp (—%) (6.3)
and
PSD(f) = —35+40exp (—%) , (6.4)

respectively, wher¢ is in MHz.

e u,(t) is a narrowband noise caused by the ingress of radio bro@nigasations usually in the frequency range
of 1-22 MHz. It is mostly amplitude modulated sinusoidalrsits. Their amplitude generally varies along the
daytime, becoming higher by night when the reflection progenf the atmosphere become stronger. It is mathe-

matically modeled by
N

Unp(t) = Z A;(t) cos (wit + 6,(t)) (6.5)
1=1
whereN is the number of broadcasting stations ahdt), w; andd;(t) are random variables.

e u,,(t) is a periodical impulsive noise asynchronous to the fundaateomponent of power system, which is
mostly caused by switched-mode power supplies. It usualydrepetition rate between 50 and 200 kHz, and
which results in the spectrum with discrete lines with freqey spacing according to the repetition rate. It is
produced by extended use of switching power supplies fourdiious household appliances today
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e ,s(t) is a periodic impulsive noise synchronous to the fundantentaponent of power system with a repetition
rate of 50 or 100 Hz and synchronous with the power frequeBagh impulses have a short duration, in the
order of microseconds, and have a power spectral densitylftaeases with the frequency. This type of noise is
generally caused by power supply operating synchronouiiytiie power frequency, such as the power converters
connected to the main supply, rectifiers within DC power $ieg@mnd appliances such as thyristor- or triac-based
light dimmers. it can be expressed by [40]

N t—t

0pe) = 32 A0t — o)+ 10 =5 (L2t ©©)

T
i=1 v

wherew; is the angular frequency of the sinusoid, @hdhe phase, of thih damped sinusoid.[(¢) is defined
as a square pulse of duratiog s, with constant amplitude in the interval< ¢ < 1 and zero elsewhere,, ., s

is the periodic arrival time, and; denotes the amplitude of tligh sinusoid.We assumé; ~ N(0, G;0?), where
G, represents the increase over the variance of Gaussianoackgnoiser?, andG; can range from 20 to 30
dB. The gainG, of sinusoids at higher pseudo-frequencies is selected tomtiae typical low-frequency content
observed in impulsive noise measurements, usually belowlt.Mhe termr; denotes the damping factor.

e v;m,(t) Is an asynchronous impulsive noise which is the hardest Bimese impulses have durations of some
microseconds up to a few milliseconds with an arbitraryrentéval time. Their PSD can reach values of more
than 50 dB above the level of the background noise, making tihe principal cause of error occurrences in the
digital communication over PLC networks. This type of naisatains a broadband portion significantly exceeding
the background noise, and a narrowband portion appeariygronertain frequency ranges. It is mainly caused
by switching transients, which occur all over a power supmywork at irregular intervals. It can be denoted by

(39]
- t— tarr
im 1) — AZ arr,t 67

()= 32 4] () (6.7)
where] [, (t) denotes the asynchronous impulse noise pulse waveforriang, ; andt,,.; refer to three ran-
dom variables: amplitude, impulse width, and interarrttale (the time between the arrival of two impulses),
respectively. For a majority of impulses we find amplitudesuad 1 V, impulse widths in the range of 108,
and interarrival times of 100 ms. Fortunately, even in higadisturbed environments such as industrial zones,
the average disturbance ratio is well below 1 percent, nngathiat 99 percent of the time is absolutely free of
asynchronous impulsive noise.

For illustration purpose, Fig. 6.5 portrays a sample of gaoknd and asynchronous impulsive noises in LV dis-
tribution power lines [41].
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6.5 PL Channel Equalization with Fuzzy Techniques

The PL channels introduce strong ISI. Also, the deep frequeatches present in the channel transfer function prevent
the use of linear equalizers, as the noise enhancementduse ¢s a serious drawback on a very noisy channel. As
a result, adecision feedback equalizef®FESs) could be a very promising solution due to its optinesduits [42].
Against the use of DFEs is the fact that PLC channels have flastgvarying impulse responses and strong noise
bursts, concentrated in both time and frequency. Then plaigsible to envision that noise bursts cause catastrophic
error propagation, and that fast time variations may nowatthannel parameter tracking when adaptation cannot be
fast enough. In this regard, the use of other kinds of noalilegualization techniques capable of coping with strong
noise bursts as well as long and fast-varying impulse resmodemand investigations.

Computational intelligence-based techniques have bedealyapplied for communication channel equalization
that present these aforementioned issues [43, 44, 45, 468449, 50, 51, 52, 53]. Among them, fuzzy systems have
been applied to the following problems [54, 55, 47, 56, 57,98 60, 61, 62, 44, 63) equalization of time-varying
and -invariant channels) equalization of channel corrupted by nonGaussian nidiep-channel interferencgCl),

iv) development of one and two dimensional equalizersyaadaptive fuzzy equalizers. Recently, the use of FSsin a
turbo equalization scheme [64], different strategies fmameters updating [54], type-2 FSs [50] and blind equaliza
tion [65] are being investigated.

A discrete-time version of linear, causal and time invariandel of baseband PL channels for BoPLC and NaPLC
applications is given by

L}L_l

y(n) =g(n)+v(n) = Z h(i)z(n — i) + v(n), (6.8)
i=0

whereg(n) denotes the PL channel output free of noige,) is the additive noise, the sequerfegn)} is constituted
by transmitted symbols previously obtained from a OFDM sginfrom apulse amplitude modulatio(PAM), a
guadrature amplitude modulatiofQAM), or any other symbol constellation, ar{d(n)}ﬁ’;gl is the bandlimited,
dispersive, and linedmite impulse respong&IR) PL channel model.

By considering ainary phase shift keyinBPSK constellation for a single-carrier orcade division multiple
acces{CDMA) system, the transmitted sequereg€n)} is taken from{+1, —1} of symbols and it is assumed to be
an equiprobable and independent sequence Bith(n — k)z(n — 1)} = 028(k — 1) and E{x(n) = 0. v(n) is the
additive impulsive noise angn) denotes the noise-free channel output. The channel outpstsved by the linear
equalizew(n) = [w(n) - - -w(n— L, +1)]T can be written as vectgr(n) = [y(n) - - - y(n— L, +1)]T. The vector of
the transmitted symbols that influence the equalizer datisiexpressed by(n) = [y(n) - - - y(n — Ly, — L, +1)]7.
As aresult, there are, = 2-»+L+ possible combinations of the channel input sequence. Andifferent values of
the noise-free channel output vec§din) = [y(n) - - - y(n — L., + 1)]* are possible. Each of these noise-free channel
output vector is called channel output state vegtdrn), j = 1, -n; given by

¥(n) = Hx;(n), (6.9)
wherex;(n) == [z(n) - z(n — Ly + L, + 1)]T denotes thgth input vector and is a matrix channel impulse
response given in the form of
hohy - hp,—1 - 0
0 ho---hp,—1 - 0
H=| . . ; (6.10)
0 0 hg -+ hp,—2hr,—1

The equalizer output(n — d) is delayed byl samples form of the transmitted sequence.

The PL channels can be equalized by using two categoriesptiad equalization techniques, namely [66, 67]: se-
guence estimation and symbol decision. The optimal saldftiosequence estimation is achieved by usimaximum-
likelihood sequence estimatidiMLSE) [68]. The MLSE is implemented by using Viterbi algthwin [69], which
determines the estimated transmitted sequén¢e) } >, when the cost function defined by

L—1 2

Jeost =D {y(n) DGR (6.11)

is minimized. Although this algorithm demands the high@shputational cost, it provides the lowest error rate when
the channel is known. On the other hand, the optimal solidtosymbol decision equalization is obtained from the
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Bayes’ probability theory [70, 71]. If the additive noisen®deled by a random process with normal distribution as
N(0, o2), then thenormalized optimal bayesian equaliZ®&OBE) is defined by

—lly(n)—5:|12 Clv(n)—54112
{ ) eXp( ()| ) ~ Y exp ( Iy(n) 51 )}

vi€Yr vi€Yy
foly(n)) = - > (y<n>d9k2) ’ 6.12)
exp #
Yr€Ya 27
whereY, = Y, UY, denote the state space composefgflength vectory;, y; ={yi(n), i=1,--- 28" z(n—
d) = +1}andy; = {yj(n), j =1,---, 2L~ Yaz(n — d) = —1}. The separation betweél} andy; is given by
fo(y(n)) =0. (6.13)

Now, let Gaussian functions be the membership functions ith@del the uncertainty of the input data and
fuzzy rules andx be a t-norm named product of reonsingletontype-1 FS [72]. Also, assume that defuzzifica-
tion contributions associated with! = {yi(n), i = 1,---, 28" z(n — d) = +1} andY,; = {y;j(n), j =
1,---, 2k z(n — d) = —1} be equal tol/pr,—1 and —1j1,-1, respectively. Then, theormalized and optimal
nonsigleton fuzzy equaliz8IONFE) is given by

— n)—§il12 3 12

{ %+6Xp (%Jm%)”) - %7exp (%)}

yi€ i€

fnsl(Y(n)) = d _||yJ(7L)i§’kH2 s (614)
ykze:'ddexp (W)

whereo? is the variance from the membership functions modellingnipeit uncertainties and antecedent rules. The
separation surface obtained by NONFE is given by

One can note that fly ()
by _
7fn51(y(n)) =1 (6.16)

if 02 = 0.
Following [18, 41], let Gaussian functions be the membgrs$hinctions that model the uncertainty of the input
data and fuzzy rules andbe a t-norm named product,

Ry, (yi(n)) = exp —% (%) (6.17)
and i .
fy, (yi(n)) = exp —% (%ﬁ;’(n)) (6.18)

denote the upper and lower “worst-case” membership funstassociated with the non-stationary behavior of the
additive noise at the inputs of the interconnected typeziyalgorithm,

ey () = exp |~ <M> (6.19)

2 EFL (TL)

and

1

L (yi(n)) = exp | —5 < (6.20)

yi(n) — mp (n))f

IRl (n)

refer to the upper and lower “worst-case” membership fumstithat define the uncertainties of the rules’ antecedents.
Now, considering that
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T (Ui max () = sup Ty, (yi(n)) * Fips (i(n)) (6.21)
yi(n)€Y;
and
B (U} (M) = Sy, (yi(n) * o (wi(n)) (6.22)

wherey; (n) is theith element of the input vectgr(n) = [yo(n) - --yz_1(n)]*. Equations (6.21)-(6.22) attain their
maximums under the following conditions [73]:

7, () g (n) 4 T (n)Ty, (1)

—k _ L i
Yi,max (n) = 532/7, (n) + E%‘f (n) (6.23)
" 5 (n)mp (n) (n)my, (n)
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Assuming thatmn,, .,y = y:(n) [73], then the nonsingleton interconnected type-1 fuzgpathm output is ex-
pressed by

fnsQ(Y(n)) = fnsQ,{l}(Y(n)) - fns2,{71}(Y(n)) (625)
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Note thaty andy,, refer to the uncertainties associated with the center okitheector state at the output channel.
The separation betweé}j andy;, is given by

fns2(y(n)) = 0. (6.31)

Now, supposing that there are not uncertainties in the meshigefunctions, thew, = &, = 0., o, = 7, = 0y,
Y, =¥ =Yk And, as aresult

frs2(y(n)) = fasi(y(n)), (6.32)

Furthermore, assuming thaf = 0, then

Equation (6.33) means that under some assumptions, thd typperconnected fuzzy algorithm reduces to NOBE. The
main advantages of the interconnected type-1 fuzzy systemtgpe-1 and type-2 FLS are [41):it deals with rule
uncertainties, in a “worse case” sense, but in a way thatas@mto capture considerable level of rules uncertainties;
ii) the heavy machinery of type-2 FLS is not applicable. In,faoly the machinery of type-1 fuzzy is needdd, it
presents the same number of parameters of type-2 FLS aralttveimumber of parameters of type-1 FLS and demands
twice the computational effort of the type-1 FLS algorithemd, finally,iv) updating rules of the parameters of the
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algorithm can be obtained similarly to those of a type-1 FASa result, better equalization of PL channel corrupted
by high-power impulsive can be performed [18]. One has te tioat the interconnected type-1 fuzzy algorithm can
also be easily derived by using the decision-feedback seltemreduce the number of channel states required for the
decision purposes [74]. Simulation results presenteddhdhiow that equalization techniques based on intercoadect
type-1 fuzzy system can surpass the performance of tradit@hannel equalization approach applied to PL channels.
For illustration purpose, Fig. 6.6 shows the convergentbien of adaptive andecision feedbackDF) version
of the interconnected type-1 fuzzy equalizer introducefl®] when applied to PL channel equalization. In this
plot, fuzzy2-S-DFE and fuzzy2-NS-DFE denotes the singleted nonsingleton adaptive interconnected type-1 fuzzy
equalizers. Fuzzy-S-DFE and Fuzzy-NS-DFE denote theatimgland nonsingleton adaptive type-1 fuzzy equalizers
proposed in [54]. From this plot, one can note that the itenected type-1 fuzzy equalizers improves the convergence
ratio of standard type-1 fuzzy equalizers.

fuzzy-S-DFE fuzzy2-S-DFE

/

MSE

fuzzy-NS-DFE /

fuzzy2-NS-DFE

Iteragéo x 10"

Fig. 6.6.Convergence of type-1 and interconnected type-1 fuzzylegus.

6.6 Mitigation of Impulsive Noise

The impulsive noise encourages investigation on commtinitgechniques that can effectively cope with it. In fact,
PLC system designs can be regarded as a highly challengikgsahe engineer has to deal with very limited resources
in a hostile environment, which in no way has been or couldrbpared for communication purposes. For enhancing
the data rate is not possible to extend bandwidth or assignfregjuency ranges. Then, only more sophisticated
modulation schemes with improved spectral efficiency opgataon strategies such as impulsive noise cancellation
can push technology forward. In this regard, several aghre@have been proposed so far to cope with the impulsive
noises in PLC as well as in other communication systems.elapproaches follow two basic strategies:

i) the employment of powerful channel coding, interleavisugd modulation techniques [75, 76, 77, 78, 9, 79, 80,
81]. Infact, itis recognized that a great deal of researfdridias been made towards the use of channel coding together
with interleaving technique to mitigate impulsive noisesniulticarrier, single-carrier, spread-spectrum-bagstesns
for PLC applications. Improvements in terms of bit-rate & &s immunities to impulse noise attained by using turbo-
coding, space-time coddReed SolomofRS) codes, among others, have been reported since the&ast[$2, 83, 84,

85, 86, 42]. Recently, the use of tlmv density parity check_.DPC) codes isolated or combined with other codes has
shown that a single-carrier system can be more efficientahanlticarrier one for PLC systems designed for dealing
with impulse noise scenario [82]. Although the use of chéknding techniques shows improvement, two reasons
can limit their full deploymenta) high power impulsive noises demand very long lengths lieé®ing procedure. As

a result, end-to-end delay and, consequently, QoS fortialapplications could no longer be guaranteed,tgrile
decoding errors generated by the channel decoding proegsade the performance of such techniques because of
their intrinsic error propagation property.

Based on the premise that channel coding techniques aréogdedeto guarantee reliable transmission through
communication channels, it can be pointed out that impramscan be attained if a nonlinear technique is applied
to reduce the impulsive noises at the channel output indigrely of the communication system applied (multi-
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carrier, single-carrier and spread-spectrum). The uskesfet nonlinear techniques can significantly reduce not only
the interleaving length, but also the decoding errors if @esigned and implemented.

ii) the use of nonlinear techniques for impulsive noise cdaiweh at the channel output [87, 88, 89, 90, 91].
In this approach, a noise cancellation technique is adddldeadutput of PL channel. A standard communication
system as well as one with noise cancellation techniquellastrated in Fig. 6.7. In Fig. 6.7 (b), the block noise
cancel implement the nonlinear technique applied to redlieenoise power at the input of the signal processing,
demodulation and decoding techniques implemented in th€ RiHysical layer) block, which is responsible for
digital communication and signal processing algorithmrming in the physical layer.

v(n)
..0110... y(n) Y_y(n) ..0110...
— MAC p{ PHY p h(n) PHY (» MAC |—

@)

v(n)
..0110... y(n) Y _y(n) ..0110...
—» MAC (| PHY = h(n) a{-ié—» C'\A(RIEEL > PHY » MAC —

(b)

Fig. 6.7.a) A standard digital communication system and b) a digahmunication system with noise cancellation technique.

The use of nonlinear techniques instead of linear ones taceethe presence of impulsive noises are motivated by
the following reasons [88, 92]) the impulsive noises can be seen as a nonlinear compontrd ehannel output;
i) the linear techniques are unable to change features oflgmpunoises such as regularity [92] and, finaliiy) the
linear techniques are not appropriate for reducing thegmes of non-stationary and broadband impulse noise.

The effect of impulsive noises in digital communicationtsyss has been recently analyzed and the performance
of new nonlinear techniques were analyzed in [41]. It canthi&ed that the standard techniques are two nonlinear
functions given by [93]

; _ y(n), if |y(n)| < Ay
bn) = {A@J exp{jZy(n)}, otherwise (6.34)
and |
oln) = { g( Y s (6.35)

wherey(n) is nth output sample of a PL channel corrupted by the presencemilsive noisesd; = max |g(n)|,
Zy(n) is the phase of(n).

According to [41], a very interesting technique showingdoesults when applied for impulsive noises mitigation
in digital communication systems is the one derived frmradian filtering(MF) approach [91, 90]. Thaveighted
median filtering(WMF) technique can be expressed by

yn+ K+1), if U(yaxi+1(n)) is true
j§(n+ K + 1) = { MEDIAN (yax +1(n), W3 ,) : (6.36)
otherwise

whereW2iE | = Wi, Wy, ..., Wak 41 are2K + 1 weight samplesyzx 11(n) is a(2K + 1)-length vector whose
elements are given by 6.8,(y2x+1(n)) is a condition that can or cannot be satisfi&dis the maximum length of
impulsive noises that can be canceled, afDIAN (y2x41(n), W3E ) is the weighted median filter. Note that
if ¥(y2x+1(n))is not considered an®; = Wy = --- = Waoi 1 = 1, then the MF-based technique turns into a
traditional MF. On the other hand, if

U(yox+1(n)) = (6.37)
ly(n + K + 1) — MEDIAN (yax 1(n), Wi )| < p’

wherep is a threshold, then a conditioned (C) WMF is accomplishea@ddition, if Wy = Wy = -+ = Wag 1 =1
in (6.37), theconditionedMF (CMF) technique proposed in [91] is obtained. In fact, muital simulations have
revealed that only conditioned MF versions are able to shmwesinteresting results in PL channels. This affirmation



6 Power Line Communications 147

makes sense because the CMF is only an effective solutiomifoulsive noises mitigation during the occurrence
periods of such noises. Note that (6.34)-(6.35) can alseigedhis kind of improvement.

Another promising class of nonlinear technique capableediicing the presence of impulse noise is the one
emerged from soft computing or computational intelligepaeadigms such aseural networkgNN's), wavelet net-
works (WN's) andfuzzy system@S's). These techniques are gaining widespread acceptare large variety of
fields, from engineering to commercial, from forecastingttficial intelligence. The reason for such an increasing
interest resides in their intrinsic generality, flexibilénd good performance in many applications where otheroasth
either tend to fail, or become cumbersome (in particularilsg noise cancellation).

Among NNs, WNs and FSs, one has to note that FSs (in partitypar2 FSs) are being successfully applied to
several problems in which the degree of uncertainties ik higd, consequently, traditional techniques have failed in
coping with such uncertainties in the following situatiai3]:

e Measurement noise is nonstationary, but the nature of tinstationarity cannot be expressed mathematically
ahead of time, e.g. time-series forecasting under vargglel-to-noise ratidSNR) measurements, communica-
tion channel under impulse noise presence;

e Adata-generating mechanism is time-varying, but the eatfithe time variations cannot be expressed mathemat-
ically ahead of time, e.g. equalization and co-channetfiatence reduction for nonlinear and time-varying digital
communication channels;

e Features are described by statistical attributes that@metationary, but the nature of the nonstationarity cannot
be expressed mathematically ahead of time, e.qg. rule-lwdassification of video traffic.

As shown in [41], the use of computational intelligence lagehniques to reduce the hardness of impulsive
noise at the channel output is a powerful technique. However has to note that the use of such technique demands
a training sequence at the Rx side for its training and, aqunsetly, considerable computational burden.

Impulsive noise cancellation in DMT and OFDM systems

The following definition and nomenclature are considered oth orthogonal frequency division multiplexing
(OFDM) anddiscrete multitone transceivéDMT) systems:

i) h = [ho---hr,—1] refers to the impulse response vector of the PL chanwel= [wq---wr, 1] iS
the vector representation of the time domain equalizeromsiple for shortening the channel impulse response.
H=[Hy---Hy_1] andW = [W, - - - W _4] are vectors constituted by the DFT samples expressed by

N-1 .
H, = Z B hpe I Gm/Nnk o — 0 N —1, (6.38)
and N1
Wk = Z =0 wne—j(Qﬂ-/N)nk’ k= 0; (33 N — 17 (639)
respectively;

i)ce=hxw=[c---cr, 1] denotes the vector representation of the shortened impedpense, whose length
and effective length aré;, + L., — 1 andL;, respectively. Since the filter for shortening impulse oese,w, is not
ideal, therc = ¢! ¢!5Tres wherec!%es = [cy---cr_1 Op, crir,—1---cL.1]isresponsible for ISI component
that results from the fact that is not ideal anc:’>? = [0y, ¢z ---cr41,-1 Or.—1—1,] produces ISI if the length
of the cyclic prefix(CP) L., > L;, — 1; 0, denotes a vector composedof zeros. Thekth samples of2/5! and

C}5Tre of the vectorC = [Cy - - - On—1] = [C§5T + CF¥Tres ... C8T, + C'471+*] can be approximated by
N-—-1 .
Gty eptle IO p =0, N -1, (6.40)
n=
€ N-1
IS es A~ T ISILes ,—j(2m/N)nk — L. 1.
c} = ano clSTres e  k=0,---,N—1; (6.41)

i) the frequency representation of the additive noise inkthesub-channel is given by
Vk = %kg'r, k+ anb, k+ Vpa, k+ V})s kTt V;'rnp, k> (642)

wherek =0,--- ,N — 1,
N—1 .
Vikgr, k = ) Vbigr(m)e /TN (6.43)
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N—-1

Vo, & = Z o Upp(n)e I Cm/NInk (6.44)
N-1 .
Voa, s =D Opa(n)e IETNITE, (6.45)
N-1 .
Vs, 1 = Z 0 Ups (n)eij(%r/N)nkv (6.46)
and N
V;mp7 k= Z 0 vimp(n>€7j(2ﬂ/N)nk; (647)

iv) the PSD ofz(n), v(n), vpkgr (1), Uns (1), Vpa(n), vps(n), @Ndvim,,(n) in the kth sub-channel are denoted by
Sks Su ke Sbkg’r’,kl Snb ks Spaks Sps’k, andsS;,p ., respectively.

Assuming that PL channel is time-invariant during a symtai$mission and its discrete time version is expressed
by (6.8), then the SNR for multicarrier (in particular OFDM&DMT) are given by

Se|oi*'| it DMT
SNRy = { So sl WeP+slclp ! (6.48)
Sl if OFDM
whereN is the number of sub-channelsang- 0, - - - | N —1. Hy, is thekth coefficient of the channel in the frequency

domain. The terms;,|C} 5 |2, k = 0,..., N — 1, appear due to the fact that ttime domain equalizefTEQ) [94]

is unable to ideally shorten the channel impulse respdﬁl}i@f\g , k=0,..,N — 1, are frequency attenuations of
the transmitted signals produced by the coefficients otthg that lie inside the effective impulse response whose
length isLy. Sy, |Wk|2, k =0,...,N — 1, are the filtered noise generated by filtering the additive@avith the
TEQ, andW,, k£ =0,..., N —1, are frequency domain weights of the TEQ. As, all terms atitite side of (6.48) are
positive, a nonlinear technique for impulsive noise caatieh can be applied. If this technique does not affectiothe
components, then the SNR in thtéh sub-channel can be expressed by

splcist|? .
SNRy = { Stkgr, x| W[ +Sk|Cp>res |2 if DMT ) (6.49)
Sl Hl” if OFDM
Sbk:gT, k ’
As a result, the following inequalities are valid:
S CISI|2 S CISI|2
| > «[Ci (6.50)
Sbigr, 1 |Wi|? + Sk|CL5res 27 S, 1 [Wi|* + Sg|Cf5Tres |2
and
H,|? Hy|?
Si [Ak” o Skl Hel” (6.51)

Sbkgr7 ko S’U, k

By applying the same idea to single-carrier adle division multiple acceg€DMA) systems, equivalent SNR
improvement can be achieved.

6.7 Channel Coding

the use of suitable error control strategies must be appliel@r the following two restrictions in order to ensure-reli
able communication in hostile environments such as powesland to reduce the bit error rate [§]JPLC networks
shall operate with a signal power that has to be below a liefinéd by the regulatory bodies aijithe signal level
has to keep data transmission over PLC medium possible.mbans there should be a certain SNR level in the
network making communications possible. Applicationgasfvard error correction(FEC) and interleaving mecha-
nisms [75, 80, 77, 78, 79] are commonly found in digital conmmation systems to cope with the disturbances in PL
channels such as impulsive noises as well as strong ISI. EBE@prove the net throughput in noisy networks such
as PLC networks so that the requirement to repeat data jsaisketduced. In a noisy PLC environment, particularly
in the presence of line synchronous impairments causingt burors, modems with FEC can offer more reliable data
communication than non-FEC modems.

In case of errors with FEC and interleaving, the damaged liata to be retransmitted by automatic repeat
request{ARQ) mechanism. The application of ARQ can reduce the gnmipability to a very low value and it is only
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limited by the remaining error probability afyclic redundancy cheqCRC) code used for error recognition, or error
tolerance specified by a particular application [9].

According to [95], the interleaving of modulated symbol&e Tx side, which are transmitted over a communica-
tion channel, followed by deinterleaving at the receivepérse burst of channel-symbol errors or corrupted symbols
over a number of codewords or constraint lengths, theretiltéding the removal of the errors by the decoding. Ide-
ally, the interleaving and deinterleaving ensure that #@der encounters statistically independent symbol ess
or metrics, as it would if the channel was memoryless. latafing of channel symbols is useful when error bursts are
caused by fast fading, interference, or even decision @ideequalization.

To deal with the high-power impulsive noise bursts as webtasng ISI in NaPLC and BoPLC systems imple-
mented with several modulation schemes, the use of Reex®ol codes, convolutional codes, turbo codes, bit-
interleaved coded modulation, trellis codes, space-tiotes, and low density parity check LDPC codes [86, 96, 97,
98, 99, 83, 42, 100, 9, 82, 85, 84, 101, 82, 102, 103, 104] heewa mvestigated the last few years.

From recent results in this field, one can note that a greatirel effort on the use of turbo coding and LDPC
coding techniques to improve the performance of digital emmication system for PLC networks.

6.8 Multi-Carrier, Spread Spectrum, and Single-Carrier

The selection of a modulation scheme for PLC system has toitd& account three major issuésthe presence of
noise and impulse disturbances causing a relatively low ,SNIEhe time-varying frequency-selective nature of the
channel, andii) regulatory constraints with regard to electromagnetimgatibility that limit the transmitted power.
A choice for a robust solution against PLC impairments ad aghn adaptive one capable of overcoming the PLC
hardness should be selected. Regarding the former chaiedas to note that it refers to using standard digital com-
munication strategies to develop a reliable and robustaligpmmunication system capable of delivering QoS for
the target applications. The latter choice is somethingjlfohew, because an adaptive digital communication system
has to be capable of selecting appropriate modulationsacceding techniques and providing dynamically spectrum
allocation to achieve the system requirements. For doingagnitive radios, which are adaptive and extremely pro-
grammable, learning users’ preferences automaticallyséeljl to changes in the operating environment, have to be
applied to future and powerful PLC modems [105, 106, 107].108

In fact, PLC systems have to manage point-to-multipointtimsér communications, share spectrum with other
well-established telecommunication system and deal wdtleese and time-varying PL channel. Then, depending
on the target application, each modulation technique hdaineadvantages. For instance, for a lower-cost and low-
data-rate power line system, FSK seems to be a good sol&wwrhigher data rates up to 1Mb/s CDMA offers the
advantage of using the its processing gain to meet radiatiowance limits [11]. Additionally, for low-data-rate
communication or NaPLC applications we can modulate digignals onto the power lines by using modulation
technigues such as BPSghase shift keyin@PSK), frequency shift keyin@=SK), minimum shift keyingMSK), and
Gaussian minimum shift keyirfGMSK) [109, 76]. However, for broadband applications, athed techniques such
as M-ary PSK (MPSK), M-arnygguadrature amplitude modulatiofMQAM), and M-ary FSK (MFSK) have to be
applied [110, 9]. Additionally, to cope with the impairmermif PL channels, PLC systems require robust and efficient
modulation techniques such sgread-spectrun(SS) andmulticarrier (MC) schemes [111, 112, 113]. Among them,
OFDM [114], DMT [86, 41, 88, 115] and CDMA have been analyzedRPLC applications. And, by performing a
fair comparison between DS-CDMA and OFDM systems for BoPb@mktream, one can note that OFDM achieve
remarkable performance and high flexibility in resourcesaggment, while CDMA guarantees good performance
and satisfactory allocation policies with simple and chesgeivers [116, 117]. Recently, various combinations of
both schemes (MC-SS), likaulticarrier CDMA (MC-CDMA), have been proposed so far for BoPLC [100, ]118
The advantage offered by MC-SS schemes refer to the factitbatachieve very good performances in the case of
multiuser communications in difficult environments andréfore, represent a potential solution for PLC system.

6.8.1 Single Carrier System

Single-carrier modulation is an attractive propositianfrthe complexity point of view [8, 119]. Despite that, sieg|
carrier modulation cannot offer more than 1 bit/s/Hz for PAgplications [120]. This is due to the fact that PL channels
introduce strongntersymbol interferenc@Sl), then powerful detection and equalization techngjaee demanded.
Additionally, deep frequency notches present in the PL nenprevent the use of linear equalizers, as the noise
enhancement they cause is a serious drawback on a very ra@syel, so only poor performance can be usually
achieved. In the access domain where typical delay spreadsraund 1Qus dramatic ISI would occur already for
data rates far below 100 kb/s [120]. Thus, the applicatioexpiensive channel equalizers cannot be avoided. So the
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advantage of simplicity in single-carrier modulation istidHowever, in [82] it is demonstrated that under the hasdne
of PL channels corrupted by strong noise bursts, a singléecalystem using a PAM technique along with a powerful
coding scheme based on LDPC coding is capable of surpassnpetformance of DMT and OFDM system for PLC
applications. In fact, according to [121], a DMT or OFDM wystis severely degraded by the hardness of PL channel
as well as the high-power impulsive noises.

6.8.2 Spread-Spectrum System

Spread spectrum is a type of modulation that spreads datattamsmitted across the entire available frequency band,
exceeding the minimum bandwidth required to send the infdion. SS systems come in several varieties: direct
sequence, frequency hopping, time hopping, chirp, andittybethods. Thelirect sequencéDS) spread spectrum
technigues have the ability to realize a multiple acceasctire in a simple way by choosing suitable spreading
sequences, that is, code-division multiple access, ancehisrwidely used in practical communication systems [100,
111]. In PL environments, SS system would show improvedeiomsnunity over narrowband systems. They possess
numerous advantages such as robustness against nondBausisie, interception difficulty, alleviation of multipat
interference using coherent RAKE reception, and narrodliaerference suppression [122]. Additionally, it demsind
low power spectrum density for data transmission.

Past contributions advocated that the effect of spreadspaaenodulation is considered limited for PL channels,
because the useful bandwidth in these channels is under 30 Méivever, recent contributions point out that the
useful bandwidth ranges from 1 up to 100 MHz [6, 5]. Then, aaretake full advantage of the interference suppression
of SS techniques, because a large bandwidth is available ahn&nnel and, consequently, the maximum data-rate of
this transmission bandwidth can be enough for the use of &ipteuaccess technique called CDMA, which allows
several users, possibly with different rate demands, tescthe PLC channel simultaneously.

From recent results, it is expected a great research effctti® analysis and deployment of the CDMA for PLC
systems operating in the frequency range from 1 MHz to 100 MHz

6.8.3 OFDM and DMT System

Recently OFDM and DMT have been proposed as very good catediffar transmission due to their merits in sim-
plifying channel estimation, and high bandwidth efficieacyl flexibility in high bit rates when applied to frequency-
selective channels such as PL ones. Following Shannonisiopt transmission suggestion, as pointed out in [123],
the OFDM or the DMT achieves the highest performance in casnmith frequency-selective fading and severe ISI.

The OFDM is, in essence, a kind of parallel digital modulatiechnique, which can overcome the multipath effect
by prolonging the symbol period of the transmitted signathle OFDM, a stream of high rate serial data is divided into
a number of streams of lower-rate parallel data by orthoguriacarriers so that the symbol period of every subchannel
is lengthened. By doing so, then subband is so narrow thaagbeciated subchannel has a flat frequency response.
As a result, a frequency-selective channel becomes eguived a set of multiple flat-fading suhchannels and ISl is
decreased. Thiaterchannel interferencg$Cl) of the subcarriers can be eliminated theoreticallythiy orthogonality
between the subcarriers, and equalization of the data wilerent detection simply amounts to a normalization by
a complex scalar, while incoherent detection does not reguiy further equalization. More important, each symbol
can be detected separately, an approach that can be extrmmeéssful in preventing errors caused by strong channel
attenuation or noise in specific subhands. Hence, OFDM igstodgainst narrowband interference and high noise
levels [42, 124, 125]

The total bandwidth demanded by OFDM or DMT is divided into &fgdlel subchannels, and bits are assigned to
subchannels in direct proportion to the subchannel SNRs s€heme that assigns the energy and hits to the different
subchannels is called a loading algorithm. In spite of itmigtness against the frequency selectivity, which is seen a
an advantage of OFDM, any time-varying character of the shbis known to pose limits to the system performance
because it results in the lost of orthogonality. The ocawreeof ICI appears because the signal components of a
subcarrier interfere with those of the neighboring subeesr

For PLC applications, coded-OFDM and coded-DMT systeme @en not only investigated by scientific com-
munities, but also applied to commercial BoPLC modems [26, 127, 128, 21, 42, 124, 120, 12, 129, 2, 15]. Further
development to increase the coded-OFDM or coded-DMT peadioice is on the way to overcome the weakness of
OFDM- and DMT-based system, (see [130, 41].

6.8.4 MC-SS Systems

The basic MC-CDMA signal is generated by a serial concatematf classical DSCDMA and OFDM. Each chip
of the direct sequence spread data symbol is mapped ontéeaedif sub-carrier. Thus, with MC-CDMA the chips
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of a spread data symbol are transmitted in parallel on @iffesub-carriers, in contrast to a serial transmission with
DS-CDMA.

The MC-DS-CDMA signal is generated by serial-to-parallehweerting data symbols intd/. sub-streams and
applying DS-CDMA on each individual sub-stream. Thus, WwitG-DS-CDMA, each data symbol is spread in band-
width within its sub-channel, but in contrast to MC-CDMA oiSBCDMA not over the whole transmission band-
width for Nc¢, 1. An MC-DS-CDMA system with one sub-carrieidentical to a single-carrier DS-CDMA system.
MC-DS-CDMA systems can be distinguished in systems wheFesti-channels are narrowband and the fading per
sub-channel appears flat and in systems with broadbandharniels where the fading is frequency-selective per
sub-channel. The fading over the whole transmission badttiwian be frequency-selective in both cases.

The use of MC-CDMA systems was analyzed in [100].The inhtespactral diversity of the MC-CDMA system
significantly improves the PLC system performance. Alse NMfC-CDMA system is also more robust to the influence
of the impulse noise for the same reasons. Furthermoreh&MC-CDMA system, the infected tones can be easily
zeroed, resulting in almost no loss in the PLC system peidoia in the presence of impulse noise.

The performance of DS-MC-based system was discussed if. [l &is contribution, the authors show that
adaptive DS-MC system with multiple access is suitable ttktvard and forward links of PLC networks.

Revising the literature about the use of combined SS and M@EE networks, few contributions are noted. In
fact, few researchers have put their attention on the adgastoffered by the combination of SS and MC for BoPLC
and NaPLC applications.

6.9 Multiple Access

Multiple access is the ability of many users to communicate wach other while sharing a common transmission
medium. PL multiple-access communications are facilitdt¢he transmitted signals are orthogonal or separable in
some sense. The choice for a multiple access scheme depetidsapplied transmission system within the physical
layer and its features.

Signals may be separated in time (time-division multipleess or TDMA), frequency (frequency-division multi-
ple access or FDMA), or code (code-division multiple acagsSDMA).

In a TDMA scheme, the time axis is divided into “time slotsatlepresent the accessible portions of transmission
resources provided by the multiple access scheme. The behesing TDMA is that it provides an upper bound on
access delay; thus, QoS is guaranteed. However, the dijffioujenerating a synchronized clock signal in power line
networks between devices remains a problem [2].

FDMA scheme can be implemented in different transmissi@tesys, such as spread spectrum and OFDM-based
transmission systems, which are considered suitable fBLBosystems. Recently, the use of FDMA was investigated
in[118].

CDMA is implemented by using spread spectrum modulatiorerthdnsmitting signals from multiple users in the
same frequency band at the same time. Information theoigates that in an isolated environment, CDMA systems
achieve the same spectral efficiency as TDMA or FDMA systemhgiboptimal multiuser detection is used. However,
due to the low bit-rate achieved with CDMA, its use is veryited. However, one has to note that recent conclusions
about frequency range between 1 and 100 MHz for viable ojperat PLC systems open the possibility for the use
of CDMA, wideband CDMA, and multi-user detection technigdier multiple access in PLC systems [131, 100].

6.10 Impact on Video, Image, and Audio Transmission

Multimedia content transmissions over PLs can provide ¢ost and a simple solution for those applications that
need to transmit audio/video data. This can be accompliglieduirements such as bandwidth, latency, and jitter to
the different nodes and traffic profiles coexisting in a PL&uoek are guaranteed by effectively combining resource
allocation algorithms, prioritization of outgoing traffic different categories (best effort, low priority, highigmity
service), node classification, and intelligent buffer mgamaent policies. For example, a real time video surveiianc
system with both visual and motion detectors which trarsrideo over the power line would not require the expen-
sive investment needed to install video cables and telephonnection that offers security and good speech quality.
[132, 133, 16]

Although the power line network is an extremely harsh medamrironment for multimedia content transmission,
rapid development of technology is showing that this can erapme in the near future. Since the existing PL
networks is already the most pervasive network in the waétldnetworks reach into corners and rooms where most
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electronic devices are already plugged into power outledsrould not need additional networks. Then, PLC networks
can serve as the backbone network for multimedia contemgitngssions [134].

Despite that, video transmissions over power lines is no¢asy task because of the characteristics of the PL
channels which typically exhibits high error probabilitycarelatively low transmission rates. Besides, the lovagel
requirements of multimedia signals can make unpracti@alual mechanism of acknowledgement and packet re-
transmission. The nature of these target applicationgbriith itself a new, more stringent set of requirementshéig
data rates to provide support for multiple HDTV streams, @@#rics must be met in terms of latency, jitter, and very
low frame error rates (for video and voice applicationsyl aimce many target applications require embedding of the
communications circuitry in consumer electronics equiptynthe add-in cost must be as low as possible.

The development of powerful signal processing technigapalole of diminishing the impairments of PL channels
to video, audio and image transmissions will provide in tkamfuture reliable and robust PLC networks capable
of delivering a wide range of multimedia content to resig@ntommercial and industrial facilities. In fact, few
contributions have addressed the issues that impair medisrcontent transmissions in PLC networks.

6.11 Concluding Remarks

This contribution discussed the power lines for narrowbemdi broadband data communications. Several key issues,
problems, and demands of NaPLC and BoPLC applications fa@siigations were highlighted. Special emphasis
was given to PL channel modeling, additive noise modelilnghael equalization with powerful fuzzy techniques,
impulsive noise cancellation, channel coding, moduladod multiple access schemes, and some issues related to
multimedia content transmission through PLC networks.

Some important questions that deserve attention by thasgved or interested in the PLC arB:the use of
cognitive ratio concepts for PLC modenig; investigation of impulse noise cancellation and dengigecthniques
together with interleaving and channel coding orig¥;development of BoPLC and NaPLC systems for MV lines;
iv) analysis of combined SS and MC systems, @nidvestigation of schemes to provide reliable multimediatent
transmissions.
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7.1 Introduction

The proliferation of information access terminals and threngng use of applications (such as e-commerce, e-voting
and e-banking) involving the transfer of personal data malkessential to provide reliable systems that are user-
friendly and generally acceptable. With conventional titgwverification systems for access control, such as passpo
and identity cards, passwords and secret codes can ea$lgified. Biometrics seem to provide a way of overcoming
some of these systems’ drawbacks, by basing verificatiorspects that are specific to each individual.

For a long time the use of biometrics has remained limiteddiicing applications, but in view of its potential
advantages, this technology is now being considered foyrotirer tasks. Commercial applications have thus been
developed, most often based on fingerprints or iris prihisseé are currently considered to be the most reliable meth-
ods, but have the disadvantage of being intrusive, and &ea dfsliked by users. This partly explains why their use
remains limited at present to professional applicatiorts @rport personnel access control), and why, up to nay, th
have hardly ever been used for the general public, even thooimmercial products of this type are available.

Clearly, users are more familiar with methods based on famiee or handwritten signature recognition, but the
level of performance of such applications is not yet highugytofor their large-scale use to be a realistic proposition.
In view of this, combining several methods would seem to beensing way forward, which remains to be validated.
Several American studies forecast a skyrocketing of thenbtacs market, mainly as a result of the development of
electronic data transfer, particularly on the Internettt# European level, there are few studies available at ptese
and one of the EU’s current concerns is to rapidly obtairabéd forward-looking studies.

What has changed recently is the ability to digitize, stov@ i@trieve biometric patterns and have them processed
by computers. Large scale deployments can thus be envisaigexample border control, voter ID cards, national ID
cards, driver’s license, welfare disbursement etc. Ingligses of applications, biometrics must be considered asly
one element of a whole system that involves the use of settsacsjuire the biometric sample, the transmission of data
from the sensor to a computer where matching will be perfarafter access to a huge database of stored templates.
It means that biometrics should not be evaluated alone Imithis system that must be designed and evaluated in its
entirety.

7.2 Overview of technical challenges: An already establigd technology still under
development

7.2.1 Architecture of a biometric system

Generally speaking, there are two phases in a biometriesygsee Fig. 7.1): a learning phase (enrolment) and a
recognition phase (verification). In all cases, the itemsidered (e.g. finger print or voice) is recorded using a Senso
and digital data are then available (a table of pixels, ataligignal, etc.). In most cases the data themselves are not
used directly; instead the relevant characteristics asedittracted from the data to formtemplate. This has two
advantages: the volume of data to be stored is reduced, aategianonymity is achieved in data storage (because it
is not possible to recover the original signal by referringitese characteristics).

The role of thelearning module is to create a model of a given person by referencedgmomore recordings
of the item considered. Most of the models used are statistiodels, which make it possible to allow for a certain
variability in individual data.
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Therecognition module enables a decision to be taken. In identification nibeesystem compares the measured
signal with the various models contained in the data basesaletts the model corresponding most closely to the
signal. In verification mode, the system will compare the sneed signal with just one of the data base models and
then authorise the person or reject him. Identification mag ery difficult task if the data base contains thousands
of individuals. Access time problems then become crucial.

Learning
Signal Feature Data base or
acquisition ’ extraction smart card
storage
Recognition
Signal Feature R Matching and
acquisition . extraction o decision
Action

Fig. 7.1.The various modules of a biometric system

7.2.2 What are the different types of errors a biometric systm can make?

Biometric systems are often evaluated solely on the basisaafgnition system performance. But it is important to
note that other factors are involved in the deployment obangitric system. One factor is the quality and ruggedness
of the sensors used. Clearly the quality of the sensors ugkafffiect the performances of the associated recognition
algorithms. What should be evaluated is therefore the skigorithm combination, but this is difficult because ofte
the same sensors are not used in both the enrolment and ésstpin practice therefore the evaluation is made on the
basis of the recognition algorithm’s resistance to the @isamous types of sensor (interoperability problem). Aret

key factor in determining the acceptability of a biometratusion is the quality of the associated communication
interface. In addition to ease of use, acquisition speedcpanckssing speed are key factors, which are in many cases
not evaluated in practice.

In the case of a verification system, two error rates are at@ilwhich vary in opposite directions: tfadse rejec-
tion rate (FRR) [rejection of a legitimate user called "the clientfjchithefalse acceptance rat§FAR) [acceptance
of an impostor]. In Figure 7.2 are drawn the distributionglénts and impostors according to the response of the
system which in general is a real number (likelihood) (sge The decision of acceptance or rejection of a person is
thus taken by comparing the answer of the system to a thré¢balled the decision threshold). The values of FAR
and FRR are thus dependent on this threshold which can berlsosas to reduce the global error of the system.

The decision threshold must be adjusted according to thieedesharacteristics for the application considered.
High security applications require a low FAR which has thieafof increasing the FRR, while Low security ap-
plications are less demanding in terms of FAR (see Figure EBR denotes Equal Error Rate (FAR = FRR). This
threshold must be calculated afresh for each applicatioadapt it to the specific population concerned. This is done
in general using a small database recorded for this purpose.

7.2.3 Different problems with different scopes and challeges

We refer to [2] to identify three different ways of using a imetric system:
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Reductible Client
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N .

Decision likelihood
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Fig. 7.2.False rejection rate and false acceptance rate of a bianvetification system

A
High
Security

FRR

Low
Security

>
FAR

Fig. 7.3.ROC (Receiver Operating Characteristic) curve

Positive Identification (“Is this person truly known to the system?”). Biometrics can verify with high certainty
the authenticity of a claimed enrolment based on the inparnkiric sample. For example, a person claims that
he is known as Mr. X within the authentication system andrsffes fingerprint; the system then either accepts or
rejects the claim based on a comparison performed betweeffdgred pattern and the enrolled pattern associated
with the claimed identity. Commercial applications suchcamputer network logon, electronic data security,
ATMs, credit card purchases, physical access controlyleelphones, PDAs, medical records management, and
distance learning are sample authentication applicatidbathentication applications are typically cost sensitiv
with a strong incentive to be user friendly.

Large Scale Identification (“Is this person in the database™ . Given an input biometric sample, a large-scale
identification determines if the pattern is associated waith of a large number (e.g., millions) of enrolled identi-
ties. Typical large-scale identification applicationdurde welfare-disbursement, national ID cards, borderrobnt
voter ID cards, driver’s license, criminal investigati@orpse identification, parenthood determination, missing
children identification, etc. These large-scale identiftcaapplications require a large sustainable throughput
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with as little human supervision as possible. In this cdsedata base must include data that can characterize each
of the people in the base, and the system must then seardtefpetson that best corresponds to what it observes.
(iiif) Screening (“Is this a wanted person?”) Screening applications covertly and unobtrusively deiee whether
a person belongs to a watch-list of identities. Examplesodening applications could include airport security,
security at public events, and other surveillance apptinat The screening watch list consists of a moderate (e.g.,
a few hundred) number of identities. By their very naturesthscreening applications do not have a well-defined
“user” enrolment phase, can expect only minimal controlrdlieir subjects and imaging conditions and require
large sustainable throughput with as little human supi&mvias possible.

Neither large scale identification nor screening can beraptished without biometrics (e.g., by using token-based
or knowledge-based identification).

Service Device Storage Database size  |Accuracy
1:N Large Scale

PC or smart cardLocal or central databage Millions of people |Low FAR

Identification
] .:L:l.PosmvTe. ~ |PC or hard disks Smart card or No database needefl.ow FRR
Identification/Verification local database
Screening | PC or hard diskLocal or central databasgsw hundred of peop|eéow FAR

Table 7.1.Summary of some characteristics associated to the aboviéometh 3 types of applications.

Table 7.1 summarizes different characteristics assattatthe three situations depicted above. Note in particular
that Large Scale Identification involves the storage of iia @n a central database, contrary to verification applica-
tions with which the information concerning the person camdrorded, for example on a smart card held by the user,
which ensures a higher degree of confidentiality, but offerdisadvantage of potential theft or loss.

7.3 Description of different biometric modalities

Even if some modalities like iris or fingerprint can be coeset as “sufficiently efficient”, it is interesting to also
envisage other inputs as the choice of one modality is lirtkealcceptability or usage purposes. In this report, we
describe in more details 4 modalities: iris, fingerprint,/&hd face, even if there are other possible choices such as
voice, signature or gaiting.

7.3.1 Iris recognition

How does iris recognition work?

The iris (see Fig. 7.4) is an overt body that is available émnote (non invasive) assessment. Unlike other modalities,
face for example, the variability in appearance of any irighhbe well enough constrained to make an automated
system possible based on currently available machinervisichnologies [3].

Fig. 7.4.Iris image.

J.Daugman is a pioneer in the iris recognition area. He phéd his first results in 1993 [4], relying on the use of
Gabor wavelets in order to process the image at severaltesolevels. An iris code composed of binary vectors is
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computed in this way and a statistical matcher (XOR, logéalusive OR operator) analyses basically the average
Hamming distance between two codes (bit to bit test agregmEms works has been patented by a US Patent (No.
4,641,349 entitled “Iris Recognition System”) held by lad Technologies, Inc (e.g. Sansar and IrisScan).

Another approach, in the framework of iris verification roduced by Wildes [3], consists of measuring the cor-
relation between two images using different small windofvseveral levels of resolution and Linear discrimination
analysis to make the decision. Also, other methods for iisfication have been proposed, in particular relying on
ICA : Independent Component Analysis (a lot of research ¥8 conducted in Asia on this modality).

Summary

The iris code obtained in the corresponding encoding psoisethe most precise print of all existing biometric tech-
nigues, at the expense of rather constrained acquisitiodittons (the camera must be infra-red, the eyes must be at
a very precise distance from the camera). These elementglpra very good quality of the initial image which is
necessary to ensure such a high level of performance. Ortlibe leand they may generate a long time during the en-
rolment phase and the necessity of personal assistandenj2method also requires a relatively expensive acqaisiti
system and necessarily involves the scanning of the eyehadan initially prove offputting to users. The resulting
reliability means it can be successfully used both for ifieation and authentication, an advantage which few other
techniques can offer.

7.3.2 Fingerprint recognition
State of the art

Most fingerprint processing approches use specific featalésd minutiae as a description of the fingerprint. These
minutiae are composed of big details like starting line§ittsmg lines and line fragments and smaller ones like rglge
ending, incipient ridges, bifurcation, pores, delta and4{shapes (see Fig. 7.5).

Automatic minutiae detection is an extremely critical grss, especially in low-quality fingerprintimages, where
noise and contrast deficiency can originate pixel configmmatsimilar to minutiae or hide real minutiae.

Several approaches to automatic minutiae extraction heee proposed [5]: Although rather different from each
other, most of these methods transform fingerprint imagesbimary images. The images obtained are submitted
to a postprocessing which allows the detection of ridgedirnThe different fingerprint authentication systems can
be classified by their level of accuracy. The greater the raoyuneeded, the more complex and naturally the more
expensive the system is. The classification of a system mdbais the number of features (minutiae) that it can deal
with. The high-tech systems are able to exploit up to 80 gant also to distinguish between a real fingerprintand a
forged one (synthetic fingerprint). The most widely usedeneyal use employs some 20 particular points. Since the
fingerprint is never captured in the same position, the watifin algorithm must perform rotation and translation of
the captured fingerprint in order to adjust the fingerprimutiae with the template minutiae.

The final stage in the matching procedure is to compare th@lsantemplate with a set of enrolled templates
(identification), or a single enrolled template (autheatimn). It is highly improbable that the sample is bit-wise
identical to the template. This is due to approximationsig $canning procedure, misalignment of the images and
errors or approximations introduced in the process of etitrg the minutiae. Accordingly, a matching algorithm is
required to test various orientations of the image and tlygedeof correspondence of the minutiae, and it assigns a
numerical score to the match. Different methods exist focpssing fingerprints:

The direct optical correlation is practically not used,dngse it is not very efficient for large databases.

The general shape of the fingerprint is generally used tgpreess the images, and reduce the search in large
databases. This uses the general directions of the lineg difigerprint, and the presence of the core and the delta.
Several categories have been defined in the Henry systenmt,wigbt loop, left loop, arch, and tented arch.

e Most methods use minutiae, the specific points like ridgereysd bifurcations, etc. Only the position and direction
of these features are stored in the signature for furthempewizon. - Some methods count the number of ridges
between particular points, generally the minutiae, indt#ahe distances computed from the position.

e Other Pattern matching algorithms use the general shape ofiges. The fingerprintis divided into small sectors,
and the ridge direction, phase and pitch are extracted aneldst

e \ery often, algorithms use a combination of all these teghes.
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Ridge Ending Core

Dedta Eidge Bifurcation

Fig. 7.5.Minutiae of a fingerprint.

Summary

Fingerprint is, up to now, the modality that allows the bestnpromise between price, acceptability and accuracy
[5] and a lot of systems based on this modality are alreadyatip@al. However, the latest evaluation results [6]
show that the performance of such a system deeply relieseoguthlity of the acquired images, in particular during
the enrolment phase. Moreover it seems that a not so ndgligdrt of the population cannot be enrolled through
fingerprints (manual workers, persons with too wet or toolthgds etc.); the percentage is estimated at up to 1 or 2
% but it seems that this number can be decreased with the e of more fingers and adequate specific enrolment
processes for persons who present problems. Another motheiexistence of a great number of different sensors
associated with various technologies which make the ipenability problem more difficult to solve because it is the
coupling of sensor and algorithms that is optimized by thegieer of the biometric system and dissociating them may
lead to a noticable decrease in performance. Fingerprintgeneral rather well accepted even if it has some forensic
connotations and it allows both identification and verifimat

7.3.3 Face Recognition
State of the art

In more than twenty years of research, several methods hearetbsted with the aim of recognizing people from the
image of their face. Some of them are dealing with local fiet(i7] like eyes, noise and mouth, while others consider
the appearance of a face (Eigen face [8] and Fisher face [8]ads) but no method up to now performs sufficiently
well, which means that a lot of research is still going on.

By 1993 several algorithms were claimed to have accurateimeance in minimally constrained environments.
To better understand the potential of these algorithms, PARNd the Army Research Laboratory established the
FERET program with the goals of both evaluating their perfance and encouraging advances in the technology
[10]. The FERET database testing employs faces with varipbsitions, scales, and lighting in a manner consistent
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with mug hots or driver’s license photography. On databaséswver than 200 people and images taken under similar
conditions, all algorithms produce nearly perfect perfance. Interestingly, even simple correlation matching can
sometimes achieve similar accuracy for databases of oryp2@ple [11]. This is strong evidence that any new
algorithm should be tested with databases of at least 20@dils, and should achieve a performance over 95% on
mug shot-like images before it can be considered poteyptalinpetitive.

The latest face verification competition FAT 2004, held imjomction with the 17th International Conference on
Pattern Recognition has shown that the best performandatééned with a method based on independent feature
analysis rather than those working with either Eigen or &idace methods. It also showed that by degrading the
recording conditions (leading to images of lower qualitie results dropped from 1.39 to more than 13% of EER,
for a database of only 52 persons. Aging also significantiyraged the performances [12].

Summary

Face is considered at this moment as a relatively non aecoratiality due to the presence of a lot of variability
(from 1.39% to more than 13% EER). Some are due to the diff@tesnges that can occur to the person over time,
like aging, wearing bears or not, glasses, hair etc. whherstare related to environmental conditions (illumiratio
textured background, poses, facial expressions). Theré#fe performance highly varies depending on the recording
conditions and the context of application (static imagesideo, with uniform background or not, with constant
lighting conditions or not).

Face recognition is not efficient enough at this moment towih Large Scale Identification but it can be useful
in the context of verification or limited access control witbnstrained acquisition conditions. It means that, during
enrolment, the person must face the camera at a fixed distarttéhat the background is uniform. This will ease
the verification process while remaining acceptable foruber. In the video context, no system can be considered
as sufficiently developed [10, 11] but there are promising e#orts using 3-D modeling in order to cope with the
problem of pose [13, 14]. Of course this may mean the use dfistpated 3-D scanners in place of standard medium-
cost cameras, therefore increasing the cost of the glok&sywhich otherwise remain practicable.

However, due to the fact that this modality is well acceptedi@atural for the users, and that it has been introduced
as a standard in travel documents by the ICAO, a lot of rebdarbeing conducted to improve the accuracy of the
systems. A big increase in performance can be expected imetktés years but this modality can never be expected to
be as accurate as fingerprint or iris due to its intrinsicaklity and behavioral character.

Nevertheless for comfort applications (like access comdroar, home or personalization of environment) which
imposes limited FAR constraints, using the face is stiliyvateresting as it can be transparent but in this case an
association with other modalities has to be consideredderdo reduce the error rates or to do a preselection of the
database.

7.3.4 DNA in Forensic Authentication
State of the Art

DNA Sequencing:DNA sequencing consists in the ordering the bases (A, T, G)af@he DNA or of a fragment
of the DNA. This procedure is quite error-prone, dependimghe quality of data.
In 1970, the dot matrix or diagram method was proposed byztbbs and G.A. Mcintyre to analyze the similarity
of the nucleotide or protein sequences (but not the whole Baéifuence)[15].
At the same time, Needleman and Wunsch used a dynamic praogranalgorithm to compute the similarity
between 2 DNA fragments. The disadvantage of this methduidttis time consuming, therefore it is impossible
to compare two sequences of 300 proteins (1088 compariééaisyman 1989) [15].
For this reason, the comparison of DNA segments is not ugettiédforensic applications, but DNA sequencing
is useful to store the DNA in a computer for further research.

DNA fingerprinting: the main type of forensic DNA testing consists of DNA fingémprDNA fingerprinting is
based on Restriction Fragment Length Polymorphism (RFEPpdymerase Chain Reaction (PCR).
Obtaining DNA fingerprinting is the result of a complicatethdratory procedure [16], which consists of taking
DNA from a cell, cutting it into many DNA segments by using egriate enzymes, separating DNA segments
on a gel by using electrophoresis, attaching a colored pfatsenall piece of DNA) to the gel and a pattern is
produced. This procedure makes a single probe’s DNA fingerpr
The final DNA fingerprint is built by using several probes &-dr more) simultaneously. Figure 7.6 shows the
first DNA fingerprint constructed by Professor Jeffreys gsid probes.



164 B. Dorizzi

-

BT,

Fig. 7.6.The first DNA fingerprint, produced by P. Jeffreys, Septenil®&4.

As a conservative estimate in [17], when using one probe teerttee DNA fingerprint, the chance that two people
have the same fingerprintis 25% (in reality, this probapisittess than 0.05). But, if we use 14 probes, the chance
that two people have the same final DNA fingerprint is abo@XYL4 or 1 per 268 million.

The set of probes, which is thus the DNA fingerprint, is vised as a 1 D “bar code” and the DNA fingerprint
matching is just a numerical comparison which allows laggale identification.

While effective at producing highly discriminatory pattsy this technology is slow, cumbersome and manual - it
couldn’t be automated.

Summary

Except for identical twins, each person’s DNA is unique ah¢hus be considered as a “perfect” modality for identity
verification. However, the human DNA length is too big to allthe examination of the whole DNA sequence; in
general identification techniques look at some specificsasEBNA, which are known to vary widely between people.
The accuracy of this technique is thus very high allowingsthath identification and verification. Enrolment can be
done from any cell that contains a structure called the mscl&his includes blood, semen, saliva or hair samples.
Acquiring these data may thus be felt as intrusive by pedilthis moment, DNA analysis is performed in specialized
laboratories and is cost and time-consuming (roughly 4 oo&r$ifor the whole procedure). Moreover there is a
complete lack of standardization which means that we angfaefrom being able to produce interoperable systems.

DNA usage is mainly forensic. Anyhow, future introductidrpossible, of a rapid, cheap DNA biometric authen-
tication technique will face acceptability problems adlikeniris or fingerprint which just correspond to performing
some internal measure of the man, DNA is something that'msit to, and very detailed about, the person. Anyhow,
when using DNA for authentication, only a very small partheg genetic information is coded and this information is
unsufficient to go back to the initial genetic heritage of pleeson.

So, it seems that it will be a long time before DNA printing dstome a real time routine for biometric authenti-
cation. However, a Canadian Laboratory recently annouagedprietary DNA extraction process which would need
only simple equipment and need a time of only 15 minutes.

According to James F. Crow [18], the technical improvemantise future will be of two types : more automation
and more accuracy in the existing processes. The authorferesees that DNA analysis could be made in real time.
The other improvement concerns the building of new systemsiring very small amounts of material to provide an
identification. Future DNA forensics are likely to involviapts and animals, they will not be confined to human DNA
as each of us carries a unique constellation of viruseseband other parasites.

7.4 Evaluation of biometric systems

First, one can try to compare the error rates of differentesygs in each modality, using estimations of FAR (False
Acceptance Rate) and FRR (False Rejection Rate), but tlesséts are only indicative as only some systems in a
restricted number of environments per application have bested. In fact, the performance of the systems is highly
dependent on the test conditions and very often, the systemgvaluated in laboratory conditions with a small
database and relatively good quality data. Moreover fatuation should include forgeries (natural or simulated) i
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the database and this is very rarely the case. Fingerpridtéaae are the subject of yearly independent international
evaluation [6, 10, 19] which now aims at testing more opereti situations while no open evaluation on iris is being
conducted.

One must also notice that new systems show up continuoudlyhat the performance is thus going to improve
continuously. This is in particular true for face autheation, the performance of which is still unsufficient for alre
applications. When trying to compare the results of difféi®/stems one has to note that the test results do not use
similar test methodology or datasets of similar scale. luldde fairer to provide the global ROC curves, instead of
FMR or FNMR.The technologies may not be directly comparabtbe extent of specific applications.

As an illustration, we report in Table 7.2 what we consideth@smost accurate table available at this moment in
the literature [2]. FNMR denotes rejection rates also qliaeFRR in the literature. FMR are also called FAR (False
Acceptance Rates) in the literature. n/a denotes data veifahility.

Biometric Face Finger Iris

FTE % failure to enroll n/a 4 7

FNMR % rejection rates 4 25 6
FMR1 % verification

10 < 0.01 < 0.001
match error rate

FMR2 % large-scale
identification for database 40 0.1 n/a

sizes of 1 million
FMR3 % screening match
error rates for database 12 <1 n/a
sizes of 500

Table 7.2.Typical biometric accuracy performance numbers reporiddrge third party tests.

The face recognition results are based on FRVT 2002 [20] mrekirapolation using Eyematic data. The finger-
print authentication errors are from [21] and assume usigbf index fingers with no failures-to-enroll.

Both fingerprint screening and identification assume theofigefingers. Fingerprint identification performance
reflects the state of the art AFIS (Automatic Fingerprinniifecation System) performance based on 2 fingers against
a 6 million person database with no failures-to-enroll [2d$ FTE is from [22] and fingerprint FTE is from [23]. Iris
error rates are from ([24, p.121]). These numbers are basedhat the authors [2] believe to be order of magnitude
estimates of the performance of the state of the art systems.

Concerning iris, Table 2 gives no results on Large Scaletifigation and Screening because there is unfortunately,
at the date of writing, no public data base which enablesréw évaluation of the algorithms that are commercially
available. The only independent known evaluation comas {&25] which indicates an FMR of 0% with a database of
roughly 2,000 people. Only Iridian [26] computed Large &ddentification with 0% FMR and a Database of roughly
10,000 persons.

More generally, in the evaluation of operational biomegystems, other criteria than performance have to be
taken into account, such as robustness, acceptabilitiifyarf data acquisition, ergonomy of the interface, emneht
and identification time. For example one has to take into @etehile choosing a practical fingerprint system, the ro-
bustness of the sensor to impacts, wrong or clumsy manipun|atirtiness [5]. Likewise, the high constraints imposed
for the acquisition of irises may significantly increase ¢ih@al enrolment or verification time capable of producing
compression problems in some applications. Moreover,imgaontact lenses or glasses may produce errors.

Note, that for any modality a relatively large part of the plgpion is unable to enroll and this has to be taken into
account when facing a specific application. Alternativecpsses have always to be envisaged.

7.4.1 Resistance of the system to forgeries

A major characteristic of biometric recognition methodgiast knowledge- and possession based methods is that it is
more difficult to reproduce or steal our biometric data theatnyt to guess a password or to steal an object. Nevertheless,
fraudulently reproducing biometric data is possible, Butéry dependent on the modality, application and resources
being considered and availability of the data to be repreduc

Different points should be considered in order to answegthestion: Is it possible to fool a biometric system?
: the technical possibility to reproduce them artificialllge availability of the biometric data (with or without the
cooperation of the person); the possibility to design bitsimeensors that are resistant to this kind of imposture.
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Let us consider the case of fake fingerprints: it is possibleeproduce artificially a fake fingerprint. Producing
a gummy clone of an available real finger is technically guesi27] and [28] have shown that it is possible to fool
commercially available fingerprint scanners. While rem@dg the ridge and valley structure is relatively easyusim
lating all the physiological properties of the finger becemmre complicated, without being impossible. Considering
the finger vitality detection problem, fingerprint sensaysld be designed to detect physiological characterisiosh
as the pulse, the blood pressure, the sweating processhdad on the knowledge of which of these characteristics
is checked in the sensor it is always possible to create affiagger with these characteristics. [28] argue that many
scanners can be fooled by heating up, flashing, humidifyBug.as pointed out in [5] a fake finger that will fool all
the vitality detections barriers implemented in a fingerpsensor, can still be built given enough resources.

As far as the availability of the biometric data, it is not yas have a good three dimensional image of the
finger, while it is possible to use latent fingerprints left different surfaces and objects by the person. However,
reconstruction of a fake finger built from latent fingerpsirdmains quite complicated, and is less reliable. Conegrni
iris, [29], it is also possible to introduce liveness tests the cameras, but J. Daugman himself quotes that “Some low
cost, consumer-oriented, handheld iris cameras do notpocate any effective liveness tests, as Professor Matsumo
demonstrated”. In fact, living tissue differs in many resgdrom artificial objects made of plastic, or printed image
on paper. In the case of the eye, there are aspects of phygiaod of the optics of a working eye, that can be
exploited. There are also behavioural tests of livenessieSaf these tests rely only on software, but some require
special hardware as well, to detect by means of physicshisaistliving tissue and not fake.

It is important to notice that, in general, the performantthe systems in verification mode (in terms of FAR)
are not published taking into account deliberate forgefiée impostors are simply the other peole in the database
but not those who deliberately try to imitate the real trdittee person (except for signature verification where the
database contains imitations). So there is almost no wasettiqi the behavior of a biometric system in the presence
of deliberate impostors.

7.4.2 Multimodality

The use of several modalities can be considered in order to:

- Improve the efficiency of the global system
A single modality biometric system can be subject to a certaimber of defaults leading to an expected or
unexpected high level of errors.
Some errors can be duesome noisassociated with the sensed data. It may be introduced indatehin many
different ways: by sensors (for example, a dirty fingerpriony ambient conditions (for instance, poor illumination
for capturing someone’s face), or by the user (the voice nfesme having a cold is a noisy input to the system).
As a consequence, when comparing the sensed data to ascliefet’ences (the stored templates of such a client),
the biometric input may be incorrectly matched, and the oser be falsely rejected.
A high level of errors can also be related Itdra-class variability Biometric data may be variable from one
acquisition to another (depending for instance on the ematistate of the person). This intra-class variability
may be stronger for some individuals, especially when talldbout behavioral biometrics (like signature or voice
or gaiting). Therefore, the biometric data acquired dumoghentication may be very different from the data
acquired during enrolment. This affects, of course, thechiagy process and may lead the system to failure.
A biometric trait is expected to bdifferential across clients.e. it has to vary significantly from one person to
another. Some modalities do indeed permit the identifioatica person (fingerprints, iris), because of their high
discrimination capability while others are less effective
Impostor attacks /livenesA biometric system may be attacked with forged data, or gendata of a dead person
may be presented to the sensor. Generally, behavioral tilmsiésignature, voice) is more susceptible to attacks
since it is easier for forgers, but physical biometrics sahe object of such attacks (there is extensive literature
on how to make fake fingers) [28].
Using severatlifferent modalities together should help to deal with the points mentioned above, mostigw
using complementary biometrics such as behavioral andigadysliscriminative or not etc. [30]. Indeed, multi-
modality has a clear impact on performance: research waxks Bhown that multimodal systems enhance au-
thentication systems’performance significantly, relativ unimodal systems. Such systems have by construction
a higher discrimination capability and are more difficulattack by impostors. Indeed combining fingerprint with
hand shape, or face recognition may circumvent the usagefingerprints, as faces and hands are more difficult
to imitate than fingers. This is also the case for voice anthliwzements which are naturally correlated.
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- Provide an alternative
Considering two (or more) modalities does not mean usingitaethe same time. Indeed if we build a biometric
system relying on both fingerprint and face and if a persomag@nroll its fingerprint, because of the bad quality
of his finger, then it will be possible to use only his face irdgr verification. Non availability of a biometric
trait can also be temporary. Imagine a system functionirtg iis and fingerprints. If one person during a short
period has a problem with his eye, so that it is impossibleetdgom the iris scan, the fingerprint system can be
used instead. The same thing occurs with people which waldige to use a specific modality (for religious or
health purposes for instance). So the multimodality of gfstesn allows a flexibility by providing an alternative to
the identification process.
When the modalities are considered at the same time, thenfusithe information provided by the different
modalities can be done at several different levels [31]: & dlecision level : in this case each system takes a
decision and only at the end, the two (eventually contradyctiecisions) are combined in general by a simple
AND or OR operation, leading to a lot of errors or rejection.this framework, the performance of a “bad”
system can degrade those of the bi-modal system. More stitegds the case of fusion of scores. In this case, the
combination concerns the scores produced by the systemetfaducing its final decision. In this framework, the
performance is always increased provided that the fusibaree is adequately chosen [32, 33, 34]. In particular
this scheme allows the reduction of the importance of a lesarate modality to the benefit of a more accurate
one (case of face and fingerprint for example). In certaiegabe two modalities that are combined may be very
correlated. This is the case for example, of lip movementanick recorded together when a person is speaking.
Inthese cases, itis possible and interesting to fuse tbemrdtion at an even earlier stage, namely just after feature
extraction and to build a unique system taking as input a ¢oation of these features [35].

7.4.3 Application Issues

One has to distinguish between “Mass Identification” aggians (border control, National ID cards, Visas etc.) Whic
demand a great level of security (very low FAR) and domepgcsonal applications (ambient intelligence, personal
accesses to computers) for which the constraints are lowa&Rriendly interfaces.

Mass identification involves:

Storage of the data on a central Database
High accuracy level
User constraints for high quality enrolment

The size of the population may be a problem, when consideringss times to database, fluidity of the entire
process.

Interoperability is another issue : if we want a border colnglystem to be used in several Schengen area entry
points, either we have to use the same system all over Euoopes need the different systems to be interoperable
(which means the ability of software and hardware on mudtiplachines from multiple vendors to communicate).
Interoperability between different systems is achieved$iyig common standards and specifications. At this moment,
the standardization of the data formats (for iris, face,dipgint) is in rapid progress in the ISO- SC37 commission.

As far as only raw data are considered, these formats witeéddassure interoperability but some propositions
are also made concerning the standardization of templéesi{inutiaes for fingerprints or face images with explicit
position of the eyes). Storing templates instead of raw plasents the advantage of compressing the information and
insuring more security in case of attack. However, it wilt alow complete interoperability. Moreover, as soon as
functional interoperability is wanted (interchange ofaithms from different vendors), there is a need for somé sof
ware interchange formats. The BioAPI specification languaas been introduced for this purpose, but its use burdens
the whole identification system. It seems that such comégraire essentially suitable for verification systems (1:1)
while in the context of Large Scale Identification systerhsytincrease the processing time which can be prejudicial
for an operational system. Very few tests have been condsotér concerning real interoperability issues which thus
remain a fundamental question. Let us just quote here fra@jtf@t with the cooperation of organizations represent-
ing seafarers and shipowners, the International Labouc®©ffiO has just completed a six-week test involving 126
volunteer seafarers on the M.V. Crystal Harmony, a vessetaipd by Crystal Cruises. The seafarers included men
and women from 30 countries and covered a wide distributf@yges and a diverse set of seafaring job categories.

The testing exercise involved seven biometric productsnstied by various manufacturers. The ILO has found
that two of them met the requirement of global interoperghbil

In the second type of applications, the focus is on transpgrand comfort for the user. So non-intrusive biomet-
rics may be used such as video recording. In this case onescamar from a sequence of images, different types of
correlated information such as gaiting [37], voice in ctatien with the face images. As none of these modalities is
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effective enough by itself they cannot be used alone. Howéwe redundancy that the joint use of all this information
will provide, will be an important tool to insure a final goaaliability in the identification of the people.

Biometrics can therefore be seen as a way to simplify everida reducing the number of keys, passwords and
pin codes that we have to memorize.

7.4.4 Biometrics as a way to increase privacy and anonymityral security

Biometrics presents users with the ability to protect antlise their privacy despite the ubiquitous nature of the
Internet and almost all forms of commerce, but due to the tfaat in general, biometric data are stored in Large
Data Bases, one can also consider that privacy and secssitgs are not satisfied by the actual implementations of
biometrics. One interesting issue to this problem is to mErBiometric Encryption which is defined in [38] by Dr.
George Tomko as the use of the unique pattern in a personrfirigt as one’s private encryption or coding key.
Fingerprint is only an example but iris or other stable bitnne can be envisaged. This way, the fingerprint of one
person can be used to code the PIN allowing access to a barikmaathe coded PIN has no connection whatsoever
with the finger pattern. What is stored in the database isthielgoded PIN. The finger pattern only acts as the coding
key of that PIN, any PIN. The fingerprint pattern, encryptedtberwise, is not stored anywhere during the process. It
stays on the finger, where it belongs. But there is anothesfii¢a all of this, and that is, true privacy: the operation of
successfully decoding the PIN confirms my eligibility forengce without having to reveal any personal identifiers.
Since I'm the only one that can decode the PIN, it is not basadust. It is “absolute” privacy.

There is also an indirect benefit to privacy. We can contiougalve a multitude of PINs and passwords, thereby
achieving “safety through numbers” versus one single ifleation with which to link everything.

The development of biometric encryption techniques is mo¢asy task because the image of the finger pattern
itself is “plastic” and does not remain stable. Each time tfau place the fingerprint on a finger scanner, from a
holistic view, it may appear to be the same, but there arealigtamall differences in the pattern due to dryness,
moisture and elasticity conditions of the skin. In additionts and scratches can change the pattern. It is somewhat
like “fuzzy” decryption. That is the challenge that devedopof this new technology face. Furthermore, the system
must be built so that these PINs or keys can only be decodédawiive” finger pattern. It must be immune from a
latent print lifted off an object, or a 3-D silicone replicksmeone’s finger pattern. Some [39] solutions have been
already proposed and some patents [40] applied for, busttiisemains a research topic as the fact that biometric
patterns are never exactly the same while doing differegquiia@tion, renders the production of a private key, thatisee
to be similar at each stage, very difficult.

7.4.5 Biometric data storage

As soon as only verification is requested, the biometric databe stored on smart cards kept by the user, which
provides him with the insurance that the data cannot be ugedwt his own authorization, contrary to what happens
with a centralized database. Biometric verification/iffegtion can also be realized through remote access, in this
case there is a need for a transmission of the biometric imagemplate through a network. This means having a
highly secure connection. Watermarking may also be usdudsrcase to insure that the transmitted data have not been
corrupted.

Of course smart cards can be lost or stolen. For this reasemdta that it contains must be encrypted but if the
information has been retrieved by a robber, it is necesgabetable to revoke it and to produce another template
which could be used for further identification. Revocatisreasy when dealing with pin codes or passwords but not
with biometric traits as we cannot change our iris or our fipgat. Cancellable biometrics is a new research field and
some preliminary propositions have been made.

One method of cancellable face biometrics is describedlih {Jonsidering a face image of a person, it is possible
to generate new images obtained after a filtering of the maigimage. The coefficients of the filter are randomly
generated thanks to a PIN code. Changing the PIN code meangioly the filter and therefore changing the new face
image generated. It has been demonstrated that for facgnitiom and if the matching algorithm relies on correlason
this process does not affect the result of recognition. Mesearch is needed to confirm these results on other face
recognition methods.

The use of such filtering is not straightforward for fingenpor iris recognition, because it affects the quality of
the images and the accuracy of the minutiae detection (fimig) or texture analysis (iris). For iris, one solutiortas
extract from the 2048 bit length code a smaller length ands&anly this information in the matching process.

Much work has been made in the framework of encryption an@mvarking in which the concern is how we
can protect the stored data. Even if the aims are differanigellable biometrics can adapt some of watermarking or
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encryption method. The two most known techniques in watekimg or encryption are those developed by Rathan
Connell and Bolle [42] and Jain et al [43]. The first one, whgore interesting for cancellable biometrics, relies on
the use of special deformations on an image (face, fingejfitia grid morphing or random transformation like block
permutation. This watermarking technique can be easilptaedizand turned into a cancellable biometric technique by
introducing a PIN code to generate the grid morphing coefiiis or the block permutation parameters.

The second watermarking technique consists of embeddiegrfidormation into the fingerprint one. In the recog-
nition process, the system reconstructs the face and therfirigt image from the embedded fingerprintimage.

It seems, at this stage of research, that cancellable bimsmean’'t work without introducing a PIN code. We
can use the right iris instead of the left iris, or one of our fiegerprints in order to introduce some cancellation in
our biometrics data, provided that enroliment has beernzeghWwith a large set of data, but it is not a completely
satisfactory solution.

From my point of view, there are still a lot of unsolved prabkein the first type of applications (interoperability,
storage, accuracy). At this moment, different experimanmtsbeing undertaken by several entities (Africa, Asia, US,
Europe, EU member-states, etc..) without any coordinatietis quote for example, the Nigerian National ID card
where fingerprints have been stored on 2D bar codes. 50 nslfi@ople were enrolled in 4 months, two years ago. A
project of a National ID card is now in progress in the Arab Eatg@s. The fingerprints will be stored on a smart card
and the check will be on the card itself (match on card).

Malaysia is developing a multi-usage biometric smart cahilem_arge Scale Experiments of a system relying
on iris identification for border control are in progresswiti concern 2 million of air passengers. No smart card is
envisaged, the checking will be through identification inagadbase (1:n). Australia is developing an access checking
application for the flying staff relying on face verificatimom the chip included in the passport (which means, with
the ICAO standard, the storage of the face on a contactléssnderted in the passport). Interoperability is requeste
[ref SAGEM, private communication]. France will introdutte principle of INES (Identité Nationale Electronique
Sécurisée) National Electronic Secured Identity, whigh be certified by the government and necessary to obtain
either the CNle (National electronic ID card) and/or thegpast. This “identity” will associate alphanumeric data
from the civilian state and physical data (photo, fingetpsignature).

In the second type of application, some products are alraaaijable (see for example [44] for a list of products
and companies) but there is a lack of certification proceslfmethe market to develop widely. Use of videos (face,
gaiting) in the home environment is still an open issue andtargially good topic for research which should lead to
interesting results in the near future. Note that the cpording results will be also useful in a wider field than pyrel
biometrics, namely videosurveillance and tracking.

7.5 Conclusion

The introduction of biometric elements in a global identitythentication system is often seen as a way to increase
security. There are still challenges considering bionststems for large scale identity verification. Large scajeee
iments have been conducted in the past in non-europeanrsufffrica, Asia) and some are now being conducted
in Europe but it seems that this is done without any coortnatnd that the results are not widely spread and directly
reusable.

There is still a lack of independent evaluations and testifngST (National Institute of Standards) in the US and
CBAT (Centre for Biometric Authentication & Testingin China are working in this direction. The BioSecure Net-
work of Excellencé, aims at becoming such an European Center for evaluatioteatidg of biometrics algorithms
and systems. Biometrics can also be seen as a way to increeaeypand anonymity when considering personal
security needs. It would be nice to increase the educatidiheofuture users and operators in order to demystify this
topic which is still considered to some extent as sciend@ficas well as to continue to develop technical research in
relation to the actual needs of the citizens and the states.
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8.1 Introduction

Photonic crystals (PCs) are periodical structures of digtematerials in one, two or three dimensions which allow
handling the light properties [1], [2], [3]. They are calleystals for the periodicity of the structure, similar tystals,

and photonic because they interact with the light. The agraknt in this area happened because of the analogy
between the photonic and electronic crystalline strustimeroduced by Yablonovitch [4], [5], [6]. These structsire
have been studied for more than 50 years in one dimension, @saanple of it we have filters and mirrors.

Photonic crystals (PCs) have attracted the attention efirebers because of their fascinating ability to suppress,
enhance, or otherwise control the emission of light in actetefrequency range by judicious choice of the con-
stant lattice, filling factor, and refractive indexes ohtag a complete photonic band gap (PBG), where light cannot
propagate through the crystal in any direction. Photonysteat structures have a number of potential applications:
resonant cavities, lasers, waveguides, low-loss wavegdngads, junctions, couplers, optical switching, wavetleng
multiplexing and demultiplexing and many more [1], [2], [B]], [8], [9]

In order to design new photonic crystal based devices, abapproaches have been used, such as the Plane
Wave expansion (PWE) [1], [3], finite differences [2], thetering matrix method [10], the cell method [11] and
the finite element method [7], [8], [9], [12], [13], which cawercome the limitations of the methods above referred
(convergence, starcaising, etc).

In this tutorial, the basic theory of the PC structures amdatplication of the finite element method in time and
frequency domains using perfectly matched layers and isopetric curvilinear elements [14] for the analysis of &nit
size photonic structures and devices such as cavitiessfaied waveguides will be presented. The time domain ap-
proach includes current sources, the full band scheme hengldwly varying envelope approximation, consequently,
bigger time steps can be used independent of the size ofeheeals [8], [15]. The transmission characteristics of the
structures under analysis can be determined and for the€tessonant cavities, the resonant frequency, qualityfact
effective modal area, and field distribution for each modelmaobtained in a single simulation [13]. A computational
tool developed by the author, for the determination of baapsgof arbitrarily shaped geometries in 2D periodical
lattices, will be provided and its use will be explained [B]ditionally, a brief introduction to future works in this
area and several applications will be also presented.

8.2 Modal Analysis of 2D Photonic Crystal Structures

To study the properties of photonic band gap materials itnipartant to find if some bands of frequencies exist
(photonic band gap) where the propagation of the electroetagwaves is prohibited in all the directions [1], [2].
In order to find these frequencies a lot of methods have begroped up to now. Here, we use the Finite Elements
Method (FEM) which works with inhomogeneous media havinged shapes as well and a generalized eigenvalues
problem with large sparse (quasi band diagonal) matriceddae solved [14], [16]. The 2D photonic crystals are
structures which have a transverse periodigizlane) and a longitudinal uniformitye¢axis). In order to study their
properties it is enough to deal with a unit cell, the atomict p&the periodic structure (Fig. 8.1), with appropriate
periodic boundary conditions [1], [2], [12].

We start from the second order wave equation in 2D given by,

o ( 9B\ 9 [ 9B\ W}
5 (ry) 32 (v ) = e



174 Rodriguez-Esqueret al

O
e
e

(©) (@)

Fig. 8.1. Periodic structures showing the unitary cell and the firstid@rin region for (a, b) square and (c, d) triangular lagsc
respectively [12].

wherec is the speed of ligth in free space = E,, p = 1,q = n? for TE modes® = H,, p = 1In?, ¢ =1 for TM. The
fields £, andH, can be separated in their envelope and their fast composgent a
H, = h e Ik=2e=dkuy

Ez — ezefjkzzefjkyy (82)

By substituting (8.2) into (8.1) and applying the well kno@alerkin method [14], [16], and discretizing the compu-
tational domain using 6-node isoparametric second-or@argular elements [14] (Fig. 8.2) we obtain an eigenvalue
problem given by,

Ao} = (22 B0} (6.9

For TE modes, {] and [B] are given by [12],

0z

{ff e 2 S dyde + [ 7 25 B dyas + ] 5 2525 dyae
T
L (2 gy - {N}%V} ") e + [ kg (2NN - (3} 2207 g

(8.4)
+ [ 5w (K2 + k5) {NH{N} dyd=
B) = 5[], (NHNYdydz]
And for TM modes, /] and [B] are given by,
[ff 2N} 2NV g g, e OLN) AN g 7 o N} 2N g
+ [ 24k (%?{N}T) dydz + J] 2jk, (6{N}{N}T> dydz + ] (k2 + k2) {N}{N}Tdyd> (8.5)

(8] = 5 [, n N HNY dyz]
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X
Fig. 8.2.6-node isoparametric second-order triangular element [14

The matrices fi] and [B] are sparse and symmetric. The matiX fis positive and real{ ¢} is the fieldh, or e, and
(wlc) is the eigenvalue.
In order to deal with only the unitary cell, the periodicalinalary conditions are imposed as shown in Fig. 8.3.
The dispersion curves computed by using the present aigofibr periodical structures in square and triangular
lattices of dielectric rods in air are shown in Fig. 8.4.

Ne=z.v="1, +a)/\ Ho=7+05a,y=1, +O.5ﬁam

y Hz=z,+ay=y) Hz= —_0*."=J‘1’) A

(@)

Fig. 8.3.Periodical boundary conditions for the unitary cell cop@sdent to (a) square and (b) triangular lattice, respelgtiv

8.3 Modal Analysis of 2D Photonic Crystal Waveguides

2D Photonic crystal waveguides can be obtained by intraduzidefect along the structure [1], [2], [12], it can be the

complete removing, the change of the size or the refraatitex value of some rows or columns. Waveguides formed
by removing a complete line of dielectric rods in square ai@hgjular lattices as well as their respective unitary cell

are shown in Fig 8.5

To obtain the dispersion characteristics of waveguides sdme eigenvalue problem given in (8.3) should be
solved. In order to obtain the dispersion curves of the waigkgs shown in Fig. 5, the eigenvalue problem should be
solved along thd™M and I'K directions for the square and triangular lattice, respelt The periodical boundary
conditions are imposed for the fields at the right and at tfidotundaries.

The guided mode for a waveguide obtained by removing a limreain a square lattice with parameters3.4,
a=0.58 um andr=0.18&: is shown in Fig. 8.6. The structure with no defect has a bapdbgéween the normalized
frequencies [0.30 - 0.46]. When a line of dielectric rodsisioved, a guided mode appears inside the band gap.

The developed algorithm for modal analysis of structures waveguides based on the above formulation is
currently being used for the design and fabrication of phiotarystal structures and waveguides with circular and
elliptical holes [17], [18], [19], [20].
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Fig. 8.4.Dispersion curves for (a) square lattice of dielectric rathw=3.6 in air andr/a=0.35 (b) triangular lattice of dielectric
rods withn=3.6 andr/a=0.33.
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Fig. 8.5.Waveguides formed by removing a complete line of dielectiits in (a) square and (b) triangular lattices, respegtivel

8.4 Analysis of 2D Photonic Crystal Cavities: Time and Fregency Domains

Resonant cavities are formed by introducing point defactheé periodic lattice. These structures exhibit localized
modes in the band gap region with a very narrow spectra ardduiglity (@) factor in a small area, becoming a good
candidate for laser fabrication [2].

Numerical simulation of defects in photonic crystals iseedg&l for the study of the localized modes and it is
divided in frequency and time domain methods. In this tatothe finite element method (FEM) is applied in both,
the time and frequency domains [7], to further investightegroperties of PC resonant cavities.

We consider a finite size photonic crystal cavity on a 2D gpaibmain on the; — 2 plane with the axis of the
rods/holes parallel to the axis as shown in Fig. 8.7 The cavities are formed by introaypoint defects, in this case
by removing or filling the central rod/hole in a periodic arrahe cavity is surrounded by PMLs to simulate open
boundaries and the variation in thedirection is neglected{dx = 0). As we can see from the geometry, the cavity
has two folded symmetry and only a quarter of the cavity néetie computed.
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Fig. 8.6.Guided mode for a photonic crystal waveguide with pararseteB.4,a¢=0.58 um andr=0.18:.
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Fig. 8.7.Finite size 2D photonic crystal cavities with the rods/lsgderpendicular to the— = plane. The boundaries are surrounded
by PMLs to simulate open boundaries (a) square and (b) heshgavities.

8.4.1 Time Domain Analysis

The transverse electric (TE) and transverse magnetic (Teltifiare compactly described by the Helmhothz equation
considering an external current densityas follows

q 0D 0 5y 0P 0 s, 0P B .
52 a2 +8y8y (ps oy +5282 P oz =0()ed, (8.6)

wherec is the speed of ligth in free spacéjs the density of current (external excitatio®) = E,, p=1,q = n?, ©
= -1p010t for TE modes@® = H,,p=1h? ¢=1,0 = -V  x(1/n?) for TM modes, is the refractive indexy, is
the free space permeability, afeg. is the unit vector in the: direction.

Here,s, s, ands, are parameters related to the absorbing boundary conslifioRML type, and the parameter
is given by
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o)1 —jQWOnd (& ) In + in PML regions (8.7)
1 in other regions

wherej = /—1, wq is the angular frequency,is the thickness of the PML layet,is the distance from the beginning
of PML, andR is the theoretical reflection coefficient. The other paramses, ands., take the values described in
Table 8.1.

Table 8.1.Values ofs, ands.

PML’s location

Sy Sz

1 S Perpendicular tg axis
s 1 Perpendicular ta axis
1 1 on the corners

Since the wave is considered to be centered at the frequanadpe field is given byd = ¢(y, z, t)exp(jwot),
whereg(y, z, t) represents the wave’s slow-varying envelope and the cudestsityJ is given in the same way, i.e.
J = V(y,zt)exp(jwot) with V(y, z,t) being the slowly varying current density. Substitutingstekpression into
(8.6), dividing the spatial domain into curvilinear triarigr elements, and applying the conventional Galerkin/FEM
procedure, we obtain the following equation for the slowdyying envelope,

2 EAGY w0y 040} ([KH%Q)[M]) (6} = {f} (8.8)

[ ] ot? c? ot

02

where the matrices\] and [K] are given by

-y / / sg{N}{N ) dyd= (8.9)

Z //l 52 a{N}a{N}T pﬁa{N}a{N}T] dydz (8.10)

s Jy s 0z 0z

where{ N} is the shape function vectdF, denotes a transpose, ait extends over al different elements affi}
represents the external excitation and is given by

(f} = { [ no{N} (jW() {Va} + B{V }) dydz for TE modes (8.11)

JANY (Vx5 {V}), dydz for TM modes
Here, the vectof '} is non zero only at the positions corresponding to the nodiaitg, where it is applied.

We use isoparametric curvilinear 6-node elements for tagadliscretization [14], see Fig. 8.2 The discretization
in the time domain is based on Newmark-Beta formulation g1g following [22] we obtain

LU — L [{o}iyr —2{0}, +{6}i_,]
Uoh — 1o [{d}iy — {0} 4] (8.12)

{¢} = [B{8}iy1 + 1 —208) {6}, + B{8},_,]

whereAt is the time step, the subscripts1, i andi-+1 denote thei(-1)-th,i-th and the {+1)-th time steps, respec-
tively, andg (0 < g < 1.0) controls the stability of the method. The marchingtretais given as

(M) — % M)+ 8 (K] + 3 (M) | {0}i11 = [~ (M) - (1 = 28) (1] + 28 [M]) ] @}, +
[M] — g [M] - B (1K) + 4 [M]) ] {8} + {1

1
c2 At?

(8.13)
We solved (8.13) by LU decomposition at the first time step layébrward and backward substitutions at each time
step to obtain the subsequent field. The initial conditioeqa};={¢},=0
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The @ factor is an important parameter of the cavity and tells esnhmber of oscillations for which the energy
decays ta—2" of its initial value. From energy time variation, we can abtde Q) factor as

U |?

= 2T 8.14
@ =G e (®19
whereU; is the energy at an arbitrary time positidh,,r is the energy after one cycle, and the cyfleorresponds

to the resonant frequency. A more general way to comg@uite

wo(t1 —to)
21n (¢1/¢0)
whereg, and¢, are the amplitudes of the electromagnetic fields at therariitimest, andt;, respectively. Here the

time step used is at least 5 times larger than that one negéfsthe fast variation is taken into account. It is importan
when cavities with highe® values are analyzed.

Q= (8.15)

8.4.2 Frequency Domain Analysis

The frequency domain scalar equation governing the trassvEE and TM modes, over a 2D spatial domain z
including PMLs, free of charges/€0), is obtained by replacing the operat®dt with the factorjwg in (8.1) as

follows 5 96 5 9
S B
sq 2¢+ ya (ps 8y>+5282 <p?$)0 (8.16)

The parametersin (8.16) are the same given in (8.6). Apgliia Galerkin method to (8.16), we obtain

A0} = (£2)" B0} (8.17)

where{¢} is the vector field, and the matriced][and [B] are given by

s T 52 T
Z// 5 a{N}a{é\;} +pf8~{afj}%1 dydz (8.18)

-y / / sg{N}{N)Tdyd- (8.19)

The resulting sparse complex eigenvalue system is efflgisolved by the subspace iteration method [23]. We obtain
then the field distribution and its complex resonant freqyern. The@-factor of the mode associated to the complex
frequencywy is given by

Re [wo]
2I'm [wo]
where Re and Im stand for the real and imaginary parts, réspbc The modal areal is computed from the field
distribution as in [24],

B fn2|¢|2dydz

- max(n?[¢[?)

Q= (8.20)

(8.21)

where¢ is the E,. or H, field.

We analyzed several cavity configurations [7] and the resatta hexagonal cavity are presented here. This cavity
is formed by removing the central rod in 4-ring and 5-ring dganal lattices of dielectric rods with refractive index
n1 = 3.0, =0.378& in air (ny = 1.0) [2]. See Fig. 8.7(a). We chose the lattice consian®d.7254,m to obtain the
resonance frequency &t = 1.55um.

Strategies to compute higher order modes will also be ginelreaplained.

8.5 Power splitters for waveguides composed by ultralow reéctive index metallic
nanostructures

The power splitting properties of metallic photonic crystaveguides, where the mechanism of propagation is the
total external reflection, are investigated [25]. Theseagavdes are composed by an air core surrounded by a cladding
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Fig. 8.8.(a) Electric field distribution of the resonant mode for therig cavity after 1,024 fs, and (b) Energy spectra in thatgav
showing the resonance at the normalized frequeng@rc = 0.468 [2].

formed by a periodic arrangement of metallic wires on sqoateiangular lattices [26], [27]. Power splitters can be
achieved by modifying the geometry at the splitting regigririiroducing a reflecting structure in order to increase
the transmission coefficient; some splitters based on thtegetures are analyzed by an efficient frequency domain
finite element approach. The proposed concept may open #shity to design more sophisticated devices based
on these waveguides and splitters. It has been shown thagwiles based on an air core and a cladding composed
by a periodic structure of metallic wires, can effectivelyide the light by total external reflection in the visible
and near-infrared spectral ranges (450-700 nm) with lowedesThis guidance mechanism can be explained by the
fact that a composite metamaterial of metallic nanowireareyed into square or triangular lattices can be treated
as an homogeneous material for an incident electromagiticwith a wavelength much larger than the unit-cell
dimensions. In addition, they can be engineered to show aivagnt refractive index lower than the air. Another
peculiar characteristic is the fact that in these kinds ofegaides it is not necessary the presence of photonic band
gap regions in order to obtain confinement of the light. Thiy oonstraint is that the equivalent refractive index,

has to be lower than 1.0.

We analyzed splitters based on square and triangulardatti€ metallic nanowires, see Fig. 8.9, by and efficient
frequency domain finite element method [28]. The metamatisrcomposed by 10 layers of cylindrical metallic wires
with constant lattice=200 nm, and radius =0.15: andr =0.1a for the square and triangular lattices, respectively. In
this way, the confinement losses in the cladding are minichi?ée analyze such structures at single wavelengths and
the operating wavelength for each material as well as itsespondent complex refractive index are: silver: 500nm,
0.13 —5 2.90; copper 652.5nm, 0.2145-3.67; and gold 652.6, 0.1664-3.15. With these parameters we can ensure
that the equivalenthomogeneous refractive index will eeicthan 1.0 with low losses and the mechanism of guidance
will be the total external reflection.

Several splitters configurations have been analyzed andwwelfthat the enhancement of the transmission coef-
ficient T is obtained by increasing the reflectivity at thettipp region. It can be done by including a solid metallic
structure (Fig. 8.9a) or by placing additional metallicsodarked in dark in Fig. 8.9b and Fig. 8.9c.

In all the simulations the input or illumination is a monoetmatic wave with Gaussian profile in the transver-
sal section, with a beam-waist of 400 nm and centered at ttrarere of the line defect (waveguide) and only the
TE polarization has been considered (Electric field pdradi¢he wires). The normalized transmission coefficient is
obtained by dividing the power at the output of the splittgrtte power at the output of the straight waveguide. In
both cases the propagation distance is considered to bartie # this way, we can obtain a transmission coefficient
independent of the waveguide losses and mode mismatche bibtfence of all loss mechanisms the maximum value
for the normalized transmission coefficient is 0.5 for ea@nbh of the splitter.

First, we analyzed the case of the solid metallic structkig. (8.9a) on square lattice. This splitter is formed by
removing the row of columns at=0 and the column of rows at=7.4 um. Then, we placed a solid structure with
vertices at (7.37, 0), (7.6(;0.3), and (7.63;£0.3). When the points at coordinates (7.37, 0) and (746D3) are
joined by using a straight line, the computed normalizedgmaission coefficient for the structure made of silver is
26% and if these point are joined by using an arc of circle,iit wcrease to 36%. The curved surface acts as a
parabola, focusing the light coming from the straight waiwdg to the branches. The arc or circle used pass by the
following three points: (7.37, 0), (7.58;0.046), and (7.60+0.3).

Another way to increase the transmission is by placing aidit metallic rods with the same radius in the splitting
region (Fig. 8.9b). We observed an increment of the trarsorido 37% (silver).



8 Modeling of Complex Photonic Structures Devices and Agaions 181

Following the same principle, we proceed to design and aeadysplitter based on a waveguide on triangular
lattice of metallic rods (Fig. 8.9c). The waveguide was ot#d by removing three rows in thEK direction and
splitters for this particular waveguide have been analytezltransmission coefficient has been calculated to be 0.24
for silver rods. In this case, the resulting geometry forgpktter on triangular lattices seems to be more complitate
than the one corresponding to square lattices and alsorisrpgnce is low. Therefore, in the triangular case we can
split the light in two branches forming 8@espect to the input waveguide while in square latticesititg tan be
split perpendicularly. The electric field distributions the silver splitters on square and triangular latticesshi@vn
in Fig. 8. The computed values for the normalized transmissbefficients corresponding to splitters in the three
configurations and for different materials are shown in &&hP.
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Fig. 8.9.Power splitter in waveguide composed by metallic silvesradd their correspondent electric field distributions [25]

The air core waveguides have some advantages over dieleogs in the visible wavelength interval, such as,
the flexibility to engineer the cladding in order to obtaitbitnarily low values of equivalent refractive index and
the minimization of the losses by choosing adequately themgdrical parameters. It is expected also that air core
waveguide migth be less lossy than dieletric waveguidesohirast, the metamaterial waveguide designs presented
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here do not have the same confinement characteristics thbatulic waveguides but can propagate visible light for
several wavelengths.

Table 8.2.Transmission coefficients for the splitters analyzed (daeahch).

TYPEI|TYPE II|TYPE Il
silver |0.35 |0.37 0.24
copper0.40 |0.43 0.24
gold [0.33 |0.37 0.21

Air core waveguides are also less lossy than waveguides loasmetallic wires where the propagation mechanism
is the photonic band gap effect [29] and the existence ofgrtiotband gap is not necessary for their operation. And
finally, the metallic structure is mechanically more robasin operate at higher temperatures and metal components
can be used for wiring of future optoelectronic integratecuts.

8.6 Frequency Dependent Envelope Finite Element Time Dom@iAnalysis of Dispersive
Materials and Metallic Structures Operating at Optical Fre quencies

To accurately perform wide-band electromagnetic simaitettj the effects of the medium dispersion should be incor-
porated. Several approaches have been proposed for tlysiamdidispersive media by using the frequency dependent
finite difference time domain (FID) method [30], [31] and a few approaches by using the fin@ment time domain
method have been proposed until now [32], [33].

A formulation taking into account the total field and the nestve evaluation of the convolution is presented in
[32], its counterpart using the auxiliary differential eqion (ADE) is presented in [33], where the formulation for
the slowly wave varying envelope and the use of the mutuér@iice method or ADE to evaluate the convolution
integral has been proposed [33]. The formulation in [32] thadimitation of the use of small time steps because the
fast component of the electromagnetic field is computed3®j, [although bigger time steps can be used, it increases
the number of unknowns and two simultaneous differentiabéigns have to be solved.

In the method here presented [34] called slowly varying Epeapproximation frequency dependent finite ele-
ment time domain by using the recursive convolution (SVE2HFETD-RC), an accurate way to evaluate the recursive
convolution is introduced, consequently, larger time stegm be used without sacrificing calculation accuracy aeith
increasing the number of unknowns.

The 2D scalar wave equation in frequency domain for the defield can be written as

9?*E, O°E,

8—y2 + W = jMOWJ;]; (8.22)

w?pogoer (w) By +
wherep is the permeability of free spacs, is the permittivity of free spacdy, is thex component of the electric
field, w is the angular frequency, anl is thex component of the current density.

In dispersive media like plasma and Debye materials, tlaivelpermittivity is given as

er (W) =

w2 .
{ L+ 55T for plasma materials (8.23)

Es—Eoo .
£ + 155 for Debye materials

wherew, andv, are the plasma and the damping frequencies, respectivedyide ., are the relative permittivity in
low and high frequencies, respectively, ands the relaxation time.
Substituting (8.23) into (8.22) and applying the Fouriansform, the time domain equations are obtained

0’E, E, 10°E, 1 , aJ,
. S8 20 2 (1 — vep®) By = — 8.24
y? 022 % Ot? + c? wp (1= vep®) Ho™oq ( )
for plasma materials, and
oo O’Ey  e€5—6 1 [0 1 1 0’E, O°E, 0J,
_fx . (L _ i e )E + L2 O P 8.25
2 o2 2 1 <8t To * e <p®) * y? TR Ty (8.29)
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for Debye materials, where = exp(bt)u(t), u(t) is the unit step functionp denotes convolution, anidis equal to
v. and 1f for the plasma and Debye materials, respectively.

Defining¥ = ¢ @ FE,, under the consideration that the modulated signal valoeges than the carrier, we can
separate the signal in the slowly varying envelope and ttecfamponent in the following wayz,, = U exp(wot), ¥
= expwot) and.J, = V exp(wot), wherelU, ) andV are the slowly varying envelope signals angis the central
angular frequency.

With this, the time derivatives of, and.J, can be written as function of their envelogésandV’, through the
relations,

o o jwot : jwot 2 jwot
3 = 556 2&)—6]070«)6]0
o7 = pr T 2Jwoy oe (8.26)

5t = 7€ + jwo erot

herew is the central angular frequency. Substituting these essjmas into (8.24) and (8.25), we obtain
102U  2jwo0U 0*U 0*U 1

> oy Gy OV v 8.27
N TER 5;‘5;"‘&2+24%‘W0 TRt = o\ Gy T ®.27)

for plasma materials, and

2 . 2 27
—2 28 - (2jwotp + 2= ) 9 + (2340 — juoSerte + St ) U + §F + 5 - st

c c21g c? To (828)
= Mo ( +JWV)

for Debye materials, applying the conventional Galerkingadure, and using second-order triangular elements for
the spatial discretization, the following matricial difémtial equation is obtained,

4 2 i3 2o+ o1 = () (8.29)

Here, matrices4], [B], [C] and [D], and, the vectof f}, are the discrete counterparts of the operators and source
related to (8.27) and (8.28) under the SVEA, respectivéigylcan be easily identified from (8.27) or (8.28). Although
the resulting convolution for the SVEA includes a fast vagycomponent into the integral, it can be computed accu-
rately, the slow component is linearly approximated in titerival ¢, ¢ + At), and the fast component is analytically
solved. Consequently, the following recursive relationbained,

(bt 1 _ e
1/%‘-&-1 =€ (b+7 O)Atwi + m [Ui+1 +e bAtUi} (1 —e 7 OAt) (830)

whereAt is the time step, and the subscrip@ndi-+1 denote the-th and the {+1)-th time steps, respectively. This
expression let us evaluate the recursive convolution Usitggr time steps.
The discretization of the envelopgin the time domain is based on Newmark-Beta formulation,[21]

% = A1t2 HUYir1 —2{U}i +{U}i-1]

U = L {Ui — {U}in] (8.31)

Uy =[8{U}is1 + (1 =28){U}:i + B{U }i-1]

the subscripts— —1, ¢ andi+1 denote thei(— —1)-th, i-th and the {+1)-th time steps, respectively. The resulting
linear system has been solved by LU decomposition at thetifinststep and by forward and backward substitutions
at each time step to obtain the subsequent field. The intiraditions are{U },={U }1={v },=0. The size of the time
step is just limited by the bandwidth of the simulation ane ttumber of unknowns remains unaltered. In order to
avoid reflections, PMLs have been used [35].

Metal-dielectric composite hanostructures formed byqatical lattices of thin metallic wires embedded in a di-
electric substrate have attracted the attention of reseescThese devices are good candidates for applications in
optical frequencies due to the possibility to obtain egemahomogeneous media with effective refractive index
lower than one or even negative values [sch03, sch04] byieiqus choice of the radius of the wires and the constant
lattice. The metal-dielectric structure analyzed is cosgabby an infinite in extension in thedirection periodical
triangular lattice of thin metallic wires of silver with ras» = 15 nm in free space with constant lattice 200 nm as
shown in Fig. 9. The frequency dependent relative perntittof silver at optical frequencies corresponds to a plasma
like behavior and can be obtained by using= 2r xv, =217 x 2074.8 THz and.. = 105.2 THz in the plasma
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expression given in (8.23), these values are different f&6h However, they fit in an excellent way the experimental
data corresponding to the permittivity of the silver givarj26].

Due to the curvilinear nature of the metallic wires, isopaetic triangular elements were implemented to model
accurately the geometry and numerical integration basetpoints formulas [36] was applied to assemble the ele-
mental matrices.

The transmitted, reflected and absorbed normalized powessptane wave for normal incidence to a metal-
dielectric composite nanostructure with 5 layers in theppgation direction have been computed by normalizing the
Fourier transform of the time variation of the electric fialcthe monitoring points 1 (reflection) and 2 (transmission)
with the Fourier transform of the incident electric field. Fig. 8.10 are shown the results obtained by using the
proposed method, which are in a good agreement whit thoséneloltin frequency domain [28]. The plane wave is
generated by a current density with a Gaussian variatiolndritne as in (8.32), wherg, = 8 fs andty = 50 fs were
defined to have a sufficiently wide bandwidth, the time step ssed was 0.4 fs and the central wavelength used was
Ao = 10‘LLm

Jy = exp |—4(t —to)? /Tﬂ (8.32)

We analyzed the photonic structure, discretizing only onigany cell in they direction due to the periodicity and
PMLs were used in the direction to end the computational domain.

Our results were found to be in good agreement with the analydnes for the plasma and debye material slabs
or with those obtained by frequency domain simulations li@r tanostructures. The time step used in SVEA is at
least four times larger than in the total field simulation tia the same convergence, when the total field is taken
into account, the\t necessary for the convergence has to be at B8, wherel’ is the period corresponding to the
central frequency of the simulation.
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Fig. 8.10.(a) Computational domain used for the simulation of the ffietdielectric composite nanostructure formed by a tgian
lar array of cylindrical wires of silver in air, with radius=0.015,m, constant lattice=0.200.m, and 5-layers in the propagating
direction (units inum) (b) normalized transmitted, reflected, and absorbed poaka plane wave at normal incidence at the
dispersive metallic-dielectric composite structure. iRssobtained by the proposed time domain method (contiswonves) and
frequency domain results (squares, circles and triarigls)

8.7 Implicit and Explicit Frequency-Dependent Finite-Element Time-Domain FETD
Methods for Metallic Nanostructures Analysis

An explicit frequency-dependent algorithm based on the[>FBethod was newly presented [37] and its performance
was compared with an implicit one [38]. In this model, thegirency dependence of the permittivity is represented by
using a plasma model, (w) =1 +w§/(jw (jw + 1)), wherew,, andv,. are the plasma and the damping frequencies,
respectively. In this way the dispersion and losses arentaite account. The explicit algorithm is obtained follogin
the formulation of the implicit method [38], and using thentral difference scheme for the time discretization in
(8.29) instead of the Newmark method, the conventional inmprocess [39] can be applied in order to transform the
final linear system of equations in a simple multiplicatioogess. This reduced considerably the computationatlteffor
and resources.

In order to assess both the implicit and explicit algoriththe transmission properties of a metallic PC in air on
square array have been computed for normal incidence ofha plave to it.
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The metallic structure analyzed is a periodical square&tif metallic rods of silver with radius = 100 nm
in free space as shown in Fig. 8.11, where the lattice cotasta®00 nm and the central column of rods has been
removed. The structure is composed of 5 layers of rods in tligection and infinite number of rods in thyalirection.
The frequency dependent relative permittivity of silveoigtained by using, =27 xv, =27 x 2074 THz and
v. = 105 THz in the plasma model. These values fit in an excelleyttive experimental data corresponding to the
permittivity of the silver.
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Fig. 8.11.(a) Geometry of the problem (b) transmission charactes$87]

8.8 Numerical Platform for Band Gap Computation

A code developed by the authors for the calculation of dsparcurves and band gaps in periodical structures will be
freely distributed and its use will be also explained.

The software can be obtained from http://www.cefetbarbfgssores/vitaly/pcmodeling, any doubt please contact
the author at vitaly@cefetba.br. The zip file contains thegqut files needed for the computation of PBGs in square
and triangular lattices. Please choose adequately thegbgayu want to use. The computation of the PBG is explained
briefly and can be obtained by following the next steps.

First, the geometry of the unit cell to be analyzed should f@vd by using the commercial mesh generator
Geometry and Daf® (http://gid.cimne.upc.es). This software can be usediaducational version with the constrain
of meshing only some hundred elements. When the new geoisetingady created, the refractive indexes should be
assigned, then the periodical boundary conditions have tasksigned in the following way: P1 (top), P2 (right), P3
(bottom) and P4 (left). Finally, the mesh is generated aeddidta that represents the discretized geometry (nodes
numeration, element numeration, refractive indexes ofeteements and number of nodes with periodical boundary
conditions) should be exported.

The next step is to use Matl&b and run the command PBG which call an m-file where the traalprepagation
constants are generated and it also calls the executabtadi@pbg.exe. The executable file was obtained by com-
piling the file modopbg.for, written in Fortran language e the finite element algorithm has been implemented. It
assembles the global matrice$|[and [B], given in (8.4) and (8.5), and saves them as data files. Tilesare loaded
by the m-file and the eigenvalues system is then solved. Met@lg can be found in the readme.doc file.

8.9 Applications, Future Work and Trends

Besides the applications here described, several othdicaigns of photonic crystal devices will be discussedsuc
as

- Couplers

- Optical Filters
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- Bends in Waveguides

- WDM devices

- Switches.

Regarding future works in this fascinant area, firstly, we @nsidering the extension of the algorithms here pre-
sented for the analysis of 3D (three dimensional) strustim@rder to obtain results from more realistic simulations
These algorithms will be able to model structures with ca@rgleometries and the refractive index will be dependent
of polarization, light intensity, temperature and elecfield intensity and for this purpose efficient solvers fog th
resulting linear system of equations are required [40]08dly, the problem of synthesis of optical devices with a
determined transmission characteristic will be also arealy We will consider for this purpose the use of optimiza-
tion techniques such as genetic algorithms [41]. Finatlg,dnalysis of photonic crystal fibers and devices is also an
interesting topic of research. [42], [43], [44].

8.10 Conclusions

In this tutorial, the basic theory about photonic crystélscures and several approaches by using the finite element
method in both, time and frequency domains for the analyfgihotonic devices based on periodical structures have

been presented. It has been shown that FEM is suitable ®Kithd of analysis and our results are in good agreement

with those previously published. Also, several appliaagiof devices based on photonic crystals structures have bee

discussed.
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