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Distributed Acoustic Sensing (DAS)

As a subcategory of  fibre-optic 
sensing, Distributed Acoustic 
Sensing measures stretching of  the 
fibre over distances of  tens of  km.

Independent measurements every 
few metres!

© Silixa



Many applications

• Fluid flows (water, air)

• Swaying and resonance of  
high-rise structures

• Earthquakes, landslides, rock 
falls, avalanches

• Cars, trains, pedestrians, boats

• Whales, weevils



Diverse deployment scenarios

Offshore
Géoazur team

Glaciers
Walter et al. (2020) Trees

Ashry et al. (2020)



Diverse deployment scenarios



How it works
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Pniov et al. (2015)
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• Commercial telecom fibre 
deployed alongside streets in 
Nice, France

• Independent measurements 
every 10m

• DAS system records 
deformation induced by cars



Roadside DAS

• Commercial telecom fibre 
deployed alongside streets in 
Nice, France

• Independent measurements 
every 10m

• DAS system records 
deformation induced by cars

Cable

D
AS

 m
ea

su
re

m
en

ts
 

ev
er

y 
10

 m



Pilot experiment
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Metropole Nice Côte d’Azur



Individual vehicle tracking

With self-supervised 
Machine Learning 
methods, we can track 
individual vehicles over 
long distances

(100% anonymous)
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(real data)



Macroscopic traffic statistics

Using advanced array 
processing techniques, 
we obtain macroscopic 
traffic statistics, like 
the average traffic 
speed and number of  
vehicles

16

(real data)



Key actions

1 denoising

2 deconvolution

3 beamforming

4 statistics
extraction

DAS
recordings



DAS earthquake monitoring



DAS earthquake recordings



Leveraging spatiotemporal coherence

• Traditional seismic data: frequency-based filtering

• Does not work when noise freq. band = signal freq. band

• DAS data has 2D structure: time & space

• Leverage spatiotemporal patterns in denoising efforts with J-
invariance

• 𝐽-invariant filtering: separate 𝐽-invariant signals (earthquakes, ocean 
waves, …) from 𝐽-variant noise (local vibrations, thermal noise, …)
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𝐽-invariance   (Batson & Royer, ICML 2019)

• Suppose we have an input 𝑧, for which we can define a partition 𝐽

• A 𝐽-invariant function 𝑔 𝑧 ! is one for which the output does not 
depend on 𝑧! for all 𝑧 and partitions 𝐽

• Zebra example: input 𝑧 is the picture of  the zebra, 𝐽 is a patch of  
pixels, and 𝑔 𝑧 ! is the prediction of  the contents of  𝐽

• 𝐽-invariant filtering: separate 𝐽-invariant signals (earthquakes, ocean 
waves, …) from 𝐽-variant noise (local vibrations, thermal noise, …)



𝐽-invariant denoising

Neural Network black box



𝐽-invariant denoising (results)

Original data Denoised data



Switching gears…



Signatures of cars

86.4 km
/h



Challenge of detection

• Spatial footprint of  a car is ~75 m

• Overlap in signals when cars are 
trailing within 2-3 seconds

• Challenge for vehicle counting and 
velocity estimation



Exploiting similarity

• Characteristic signature of  a car recorded at a given location is the 
same for each car (up to a proportionality constant)

• Make measurements of  cars more “compact” by deconvolving this 
characteristic signature from the DAS data



Deconvolution Auto-Encoder (DAE)



Deconvolution results



Traffic analysis



Traffic analysis



DAS beamforming (Model #1)

• Cars are identified as 
coherent waveforms 
propagating at a 
constant speed

• DAS is an array of  
sensors: ideally suited 
for beamforming analysis



DAS beamforming (Model #1)

• Cars are identified as 
coherent waveforms 
propagating at a 
constant speed

• DAS is an array of  
sensors: ideally suited 
for beamforming analysis

Model #1

Define a DAS measurement of a car with velocity 𝒗 at 
sensor 𝒒 (separated by distance 𝒅) and time instant 𝑛 as:

𝑦! 𝑛 = 𝑠 𝑛 − 𝑞
𝑑
𝑣

+ 𝑛!(𝑛)

The Discrete Fourier Transform of this measurement is:

𝑌! 𝑘 = 𝑆 𝑘 exp
−𝑗2𝜋𝑘
𝑁

𝑞𝑑
𝑣

+ 𝑉!(𝑘)



DAS beamforming (Model #1)

• Cars are identified as 
coherent waveforms 
propagating at a 
constant speed

• DAS is an array of  
sensors: ideally suited 
for beamforming analysis

Model #1

Define steering vector:
 

𝒆" 𝑣 = 1, exp
−𝑗2𝜋𝑘
𝑁

𝑑
𝑣
, exp

−𝑗2𝜋𝑘
𝑁

2𝑑
𝑣

, …
#

Define signal vector: 

𝒚𝑞 𝑘 = 𝑌! 𝑘 , 𝑌!$% 𝑘 , …
#
= 𝑆 𝑘 𝒆" 𝑣 + 𝒏(𝑘)

Covariance matrix:

𝑪(𝑘) = E! 𝒚𝑞 𝑘 𝒚!
ϯ (𝑘)



DAS beamforming (Model #2)

• DAS is uniformly 
sampled in time and in 
space

• Instead of  performing 
the DFT and 
beamforming in time, we 
take the DFT in space

Model #2

Define a DAS measurement of a car with velocity 𝒗 at 
sensor 𝑞 (separated by distance 𝒅) and time instant 𝒏 as:

𝑦' 𝑞 = 𝑟 𝑞 − 𝑛
𝑣
𝑑

+ 𝑛'(𝑞)

The Discrete Fourier Transform of this measurement is:

𝑌' 𝑘 = 𝑅 𝑘 exp
−𝑗2𝜋𝑘
𝑀

𝑛𝑣
𝑑

+ 𝑉'(𝑘)

Given a wavenumber 𝑘 and time window 𝐿, define a 
temporal sliding vector:

𝒚' 𝑘 = 𝑌' 𝑘 , … , 𝑌'$()% 𝑘 #



DAS beamforming (Model #2)

• DAS is uniformly 
sampled in time and in 
space

• Instead of  performing 
the DFT and 
beamforming in time, we 
take the DFT in space

Model #2

Define steering vector:
 

𝒆" 𝑣 = 1, exp
−𝑗2𝜋𝑘
𝑀

𝑣
𝑑
, exp

−𝑗2𝜋𝑘
𝑀

2𝑣
𝑑

, …
#

 Covariance matrix:

𝑪 𝑘 = 𝐸𝑛 𝒚' 𝑘 𝒚'
ϯ (𝑘)



Beamforming detection
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DAS traffic monitoring
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Model architecture

Tθ! G  è G*

Localisation network

θ!

Grid generator + 
Sampler

I!
I!

I!"# I!"#

Eθ!(I+)

Model

[1] Shapira Weber, Ron A., et al. "Diffeomorphic temporal alignment nets." Advances in Neural Information Processing Systems 32 (2019).
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Model architecture
Grid generator (toy example)

In

G
x% x, x- x. x/

Tθ$ x = x + %
I

J
vθ$ ϕθ$ x, τ dτ

vθ!(x)

x

Tθ# is a Continuous Piecewise-Affine Based (CPAB) transformation

Tθ$(G)

GW

x%0 x,0 x-0 x.0 x/0

Freifeld, Oren, et al. "Transformations based on continuous piecewise-affine velocity fields."
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Self-supervised training

Tθ! G  è G*

Localisation network

θ!

Grid generator + 
Sampler

I!
I!

I!"# I!"#

Eθ!(I+)
F
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C
N
N 

X3 X2

Loss = ∑LMINOPQJ,
,

ER$ IL −
ILSJ TU

U
+ α∑LMINOPQJ θL V%&'

()
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Velocity estimation
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Velocity estimation

100 km/h 104 km/h 90 km/h

Window average speed: 
97 km/h
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Velocity estimation
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Take-home messages

1. DAS provides the tools to make very dense measurements in 
previously inaccessible environments

2. The 2nd dimension of  DAS data facilitates new analyses and 
processing techniques based on spatiotemporal coherence

3. Lots of  unexplored potential and applications by combining DAS 
with Machine Learning



Thanks!

Contact

Papers and codes available online.

Please contact also

cedric.richard@unice.fr
www.cedric-richard.fr

martijn.vandenende@oca.eu
martijnvandenende.nl


