This Wheel's on Fibre: using fibre-optic sensing for traffic monitoring

3iA Côte d'Azur

UNIVERSITÉ : CÔTE D'AZUR

Institut interdisciplinaire d'intelligence artificielle

Cédric Richard Université Côte d'Azur, France

> <u>Contributors</u>: Martijn van den Ende André Ferrari Anthony Sladen

Distributed Acoustic Sensing (DAS)

As a subcategory of fibre-optic sensing, Distributed Acoustic Sensing measures stretching of the fibre over distances of tens of km.

Independent measurements every few metres!

Many applications

- Fluid flows (water, air)
- Swaying and resonance of high-rise structures
- Earthquakes, landslides, rock falls, avalanches
- Cars, trains, pedestrians, boats
- Whales, weevils

Diverse deployment scenarios

Diverse deployment scenarios

Pniov et al. (2015)

Time →

Distance (= $\frac{1}{2}$ x time x speed of light)

Time →

Distance (= $\frac{1}{2}$ x time x speed of light)

Roadside DAS

- Commercial telecom fibre deployed alongside streets in Nice, France
- Independent measurements every 10m
- DAS system records deformation induced by cars

Roadside DAS

- Commercial telecom fibre deployed alongside streets in Nice, France
- Independent measurements every 10m
- DAS system records deformation induced by cars

Pilot experiment

Metropole Nice Côte d'Azur

Individual vehicle tracking

(real data)

With self-supervised Machine Learning methods, we can track individual vehicles over long distances

43.69°N 43.685°N 43.68°N -ARRAS Time of day: 43.675°N 06:47:13 7.215°E 7.22°E 7.225°E 7.23°E 7.235°E 7.24°E 7.245°E 7.25°E 7.255°E

(100% anonymous)

Macroscopic traffic statistics

Using advanced array processing techniques, we obtain macroscopic traffic statistics, like the average traffic speed and number of vehicles

Key actions

DAS earthquake monitoring

DAS earthquake recordings

Leveraging spatiotemporal coherence

- Traditional seismic data: frequency-based filtering
- Does not work when noise freq. band = signal freq. band
- DAS data has 2D structure: time & space
- Leverage spatiotemporal patterns in denoising efforts with Jinvariance
- *J*-invariant filtering: separate *J*-invariant signals (earthquakes, ocean waves, ...) from *J*-variant noise (local vibrations, thermal noise, ...)

By Yathin S Krishnappa Own work, CC BY-SA 3.0

J-invariance (Batson & Royer, ICML 2019)

- Suppose we have an input z, for which we can define a partition J
- A J-invariant function $g(z)_J$ is one for which the output does not depend on z_I for all z and partitions J
- Zebra example: input z is the picture of the zebra, J is a patch of pixels, and $g(z)_I$ is the prediction of the contents of J
- *J*-invariant filtering: separate *J*-invariant signals (earthquakes, ocean waves, ...) from *J*-variant noise (local vibrations, thermal noise, ...)

J-invariant denoising

Output

.....

J-invariant denoising (results)

Original data

Switching gears...

Signatures of cars

Challenge of detection

- Spatial footprint of a car is \sim 75 m
- Overlap in signals when cars are trailing within 2-3 seconds
- Challenge for vehicle counting and velocity estimation

Exploiting similarity

- Characteristic signature of a car recorded at a given location is the same for each car (up to a proportionality constant)
- Make measurements of cars more "compact" by deconvolving this characteristic signature from the DAS data

Deconvolution Auto-Encoder (DAE)

Deconvolution results

Traffic analysis

Traffic analysis

DAS beamforming (Model #1)

- Cars are identified as coherent waveforms propagating at a constant speed
- DAS is an array of sensors: ideally suited for beamforming analysis

DAS beamforming (Model #1)

- Cars are identified as coherent waveforms propagating at a constant speed
- DAS is an array of sensors: ideally suited for beamforming analysis

Model #1

Define a DAS measurement of a car with **velocity** *v* at **sensor** *q* (separated by **distance** *d*) and time instant *n* as:

$$y_q(n) = s\left(n - q\frac{d}{v}\right) + n_q(n)$$

The Discrete Fourier Transform of this measurement is:

$$Y_q(k) = S(k) \exp\left(\frac{-j2\pi k}{N}\frac{qd}{\nu}\right) + V_q(k)$$

DAS beamforming (Model #1)

- Cars are identified as coherent waveforms propagating at a constant speed
- DAS is an array of sensors: ideally suited for beamforming analysis

$$\underbrace{\text{Model #1}}$$
Define steering vector:
$$e_k(v) = \left[1, \exp\left(\frac{-j2\pi k}{N}\frac{d}{v}\right), \exp\left(\frac{-j2\pi k}{N}\frac{2d}{v}\right), \dots \right]^T$$
Define signal vector:
$$y_q(k) = \left[Y_q(k), Y_{q+1}(k), \dots \right]^T = S(k)e_k(v) + n(k)$$
Covariance matrix:
$$\mathcal{L}(k) = \mathbb{E}_q \left[y_q(k)y_q^{\dagger}(k) \right]$$

DAS beamforming (Model #2)

- DAS is uniformly sampled in time and in space
- Instead of performing the DFT and beamforming in time, we take the DFT in space

Model #2

Define a DAS measurement of a car with velocity v at sensor q (separated by distance d) and time instant n as:

$$y_n(q) = r\left(q - n\frac{v}{d}\right) + n_n(q)$$

The Discrete Fourier Transform of this measurement is:

$$Y_n(k) = R(k) \exp\left(\frac{-j2\pi k}{M}\frac{nv}{d}\right) + V_n(k)$$

Given a wavenumber k and time window L, define a temporal sliding vector:

 $\mathbf{y}_{n}(k) = [Y_{n}(k), \dots, Y_{n+L-1}(k)]^{\mathrm{T}}$

DAS beamforming (Model #2)

- DAS is uniformly sampled in time and in space
- Instead of performing the DFT and beamforming in time, we take the DFT in space

Beamforming detection

Model #1

Model #2

DAS traffic monitoring

39

time (30 s)

Model architecture

[1] Shapira Weber, Ron A., et al. "Diffeomorphic temporal alignment nets." Advances in Neural Information Processing Systems 32 (2019).

Model architecture

Grid generator (toy example)

Freifeld, Oren, et al. "Transformations based on continuous piecewise-affine velocity fields."

 $T^{\boldsymbol{\theta}_n}$ is a Continuous Piecewise-Affine Based (CPAB) transformation

Self-supervised training

$$\text{Loss} = \sum_{n=0}^{Nch-1} \left\| \mathbf{E}^{\boldsymbol{\theta}_n}(\mathbf{I}_n) - \mathbf{I}_{n+1} \right\|_{12}^2 + \alpha \sum_{n=0}^{Nch-1} \left\| \boldsymbol{\theta}_n \right\|_{\boldsymbol{\Sigma}_{CPA}^{-1}}$$

42

Velocity estimation

Velocity estimation

Window average speed: 97 km/h

Velocity estimation

Take-home messages

- 1. DAS provides the tools to make very dense measurements in previously inaccessible environments
- 2. The 2nd dimension of DAS data facilitates new analyses and processing techniques based on spatiotemporal coherence
- 3. Lots of unexplored potential and applications by combining DAS with Machine Learning

Thanks!

Contact

cedric.richard@unice.frwww.cedric-richard.fr

Papers and codes available online.

Please contact also

