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Distributed Acoustic Sensing (DAS)

As a subcategory of fibre-optic

sensing, Distributed Acoustic neligent Distibuted Acoustic Snsor
Sensing measures stretching of the | |
fibre over distances of tens of km. ' S

Optical fiber

Independent measurements every
few metres!

Acoustic field

Laser pulse propagating
® ey through the fiber
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Many applications

* Fluid flows (water, air)

* Swaying and resonance of
high-rise structures

* Farthquakes, landslides, rock
falls, avalanches

* Cars, trains, pedestrians, boats

e \WWhales, weevils




Diverse deployment scenarios

Glaciers
Walter et al. (2020) Trees Offshore

Ashry et al. (2020) Geoazur team
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e Optical Fiber




Diverse deployment scenarios
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How It works

Light pulse

Inhomogeneities Independent Rayleigh
scattering centers

Pniov et al. (2015)



How It works

J7 Light pulse

Light intensity / Phase

Time —

Distance (= ¥2 x time x speed of light)



Light intensity / Phase

How It works
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Roadside DAS

Cable
@ @ @ @ @ @
« Commercial telecom fibre aa B
deployed alongside streets in
Nice, France P
* Independent measurements
every 10m ol

* DAS system records
deformation induced by cars
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DAS measurements
every 10 m
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Roadside DAS
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Pilot experiment
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Metropole Nice Cote d'Azur
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Individual vehicle tracking

With self-supervised
Machine Learning
methods, we can track
individual vehicles over
long distances

(100% anonymous)

(real data) NAN
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Macroscopic traffic statistics

(real data) MAGNAN

Using advanced array 2
processing technigues,
we obtain macroscopic
traffic statistics, like
the average traffic
speed and number of
vehicles
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‘ denoising

e deconvolution

DAS a beamforming

recordings
° statistics

extraction



DAS earthquake monitoring

earthquake —\

ambient noise A
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time [s]




DAS earthquake recordings

Distance along cable [km]




Leveraging spatiotemporal coherence

* Traditional seismic data: frequency-based filtering
* Does not work when noise freq. band = signal freqg. band
* DAS data has 2D structure: time & space

* [Leverage spatiotemporal patterns in denoising efforts with J-
invariance

* [-invariant filtering: separate J-invariant signals (earthquakes, ocean
waves, ...) from J-variant noise (local vibrations, thermal noise, ...)
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J-Invariance

* Suppose we have an input z, for which we can define a partition J

* A J-invariant function g(z); is one for which the output does not
depend on z; for all z and partitions J

* /ebra example: input z is the picture of the zebra, J is a patch of
pixels, and g(z); is the prediction of the contents of ]

* [-invariant filtering: separate J-invariant signals (earthquakes, ocean
waves, ...) from J-variant noise (local vibrations, thermal noise, ...)



J-invariant denoising

Input (11 x 2048)

Neural Network black box




-Invariant denoising (results

Original data

Distance along cable [km]
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witching gears..

Fibre-optic
cable




Signatures of cars




Challenge of detection

* Spatial footprint of a caris ~/5 m === =

* Overlap in signals when cars are = =
trailing within 2-3 seconds
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* Challenge for vehicle counting and = SSS— =
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Exploiting similarity

* Characteristic signature of a car recorded at a given location is the
same for each car (up to a proportionality constant)

* Make measurements of cars more "compact” by deconvolving this
characteristic signature from the DAS data
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Deconvolution Auto-Encoder (DAE)

Input (24 x 1024)

Architecture

JIE

] Convolutional layer
S 5. v S— [[] Downsampling layer
\/\/\\: [ Upsampling + concatenation layer
— A~ 7] Output convolutional layer
://\,f - Skip connection
T output x W

Output (24 x 1024)
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Traffic analysis
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Traffic analysis
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DAS beamforming (Model #1)

* Cars are identified as
coherent waveforms
propagating at a
constant speed

* DAS is an array of
sensors: ideally suited
for beamforming analysis

time [s]



DAS beamforming (Model #1)

* Cars are identified as
coherent waveforms
propagating at a
constant speed

* DAS is an array of
sensors: ideally suited
for beamforming analysis

Model #1

Define a DAS measurement of a car with velocity v at
sensor q (separated by distance d) and time instant n as:

d
yg(n) =s (n — q;) + ng(n)
The Discrete Fourier Transform of this measurement is;

—j2mk qd
N %

Y, (k) = S(k) exp( ) +V, (k)




DAS beamforming (Model #1)

* Cars are identified as
coherent waveforms
propagating at a
constant speed

* DAS is an array of
sensors: ideally suited
for beamforming analysis

Model #1

Define steering vector:

—j2mk d —j2mk 2d T
ex() = Lo (5= ) oo (F— ) -

Define signal vector:

Yo (k) = [Y, (), Yyur (k) .| = SU)er(v) + n(k)

Covariance matrix:

C(k) = Eq|y, (¥} (k)]




DAS beamforming (Model #2)

* DAS is uniformly
sampled in time and in
space

* Instead of performing
the DFT and
beamforming in time, we
take the DFT in space

Model #2

Define a DAS measurement of a car with velocity v at
sensor q (separated by distance d) and time instant n as:

ya(q) =7 (CI - ng) + n,(q)

The Discrete Fourier Transform of this measurement is:;

—j2nk nv

7) + V()

Y,,(k) = R(k) exp (

Given a wavenumber k and time window L, define a
temporal sliding vector:

yn(k) = [Yn(k)» L Yn+L—1(k)]T




DAS beamforming (Model #2)

* DAS is uniformly
sampled in time and in
space

* Instead of performing
the DFT and
beamforming in time, we
take the DFT in space

Model #2

Define steering vector:

M d

e (v) = [1, exp( o

Covariance matrix:

C(k) = E,|yn(R)yh(0)]
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) e L2

d

)]

T




detection
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DAS recordings

Model #1
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DAS traffic monitoring

CINESTIE
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Model architecture

= -

In
n C By | ' € E% (1)
o N ><3Exz—>gT9n(G)-)ng->>< »W\/\/v
| N ' | .
Grid generator +
ln+1 Sampler |
Localisation network n+1

[1] Shapira Weber, Ron A., et al. "Diffeomorphic temporal alignment nets." Advances in Neural Information Processing Systems 32 (2019). o



Model architecture

Grid generator (toy example)

1 ° TOn is a Continuous Piecewise-Affine Based (CPAB) transformation
° o 1
" o T6n x) =x+ f vOn (d)en (x, T)) dt
0
)\ . : . .
X1 X2 X3 X4 X5
G 0
von(x)
1 + i i i i i
T (G) R
S b LN
41

Freifeld, Oren, et al. "Transformations based on continuous piecewise-affine velocity fields."



Self-supervised training

In
n | |el f8n |f vl E%n (1)
o N X3CX2—>§TGH(G)-)GW§'>>< > M\/\Aﬁ
] N : y
Grid generator +
lh+1 Sampler |
Localisation network n+1 1

Loss = N[O (1,) -

2
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Velocity estimation
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Velocity estimation
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100 km/h 104 km/h 90 km/h

Window average speed:
97 km/h
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Speed in km/h
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Velocity estimation
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Take-home messages

1. DAS provides the tools to make very dense measurements in
previously inaccessible environments

2. The 2" dimension of DAS data facilitates new analyses and
processing technigues based on spatiotemporal coherence

3. Lots of unexplored potential and applications by combining DAS
with Machine Learning



Contact ¥} cedric.richard@unice.fr
1 www.cedric-richard.fr

Papers and codes available online.

Please contact also

martijn.vandenende@oca.eu
[ martijnvandenende.nl



