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Part 1: Early history of source separation

Christian Jutten and Pierre Comon

inspired by the talk presented in GRETSI 2023
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The story began in 1982

During ”Neurosciences et
Sciences de l’Ingénieur”,
Hérault, Ans and I discussed
with neuroscientists about
motion decoding in
vertebrates.

Position and speed recorded
by spindle receptors (in
muscle tendons) and
transmitted to the brain

Static and dynamic fibers

But, in each one, position and
speed are mixed!!!

Question: How is the brain able to separate position and speed?
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Model and solution

Modelling the problem

Joint with fixed position =
constant frequency

During motion = non zero
speed is superimposed to the
position

Primary fibers (fI ) are static,
while secondary (fII ) are
dynamic

Linear model:
{

fI (t) = a11p(t) + a12v(t)
fII (t) = a21p(t) + a22v(t)

with a11 > a21 and a12 < a22

Compact notation:
x(t) = (fI (t), fII (t))T and
s(t) = (p(t), v(t))T leads to:

x(t) = As(t)

But A and s(t) are unknown!

Knowing only x(t), is it possible to estimate s(t)?
Christian Jutten Campinas and Rio, June 2024 4 / 63
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Model and solution

Toward a first solution

The problems

A can be assumed to be invertible, but is unknown

Estimate s(t) only from recordings x(t) is ill-posed

Assumptions

p(t) and v(t) are statistically independent

Strange, since v(t) = dp
dt (t)!?

In fact, at a unique time instant t, knowledge of p(t) provides
no information of v(t), and vice versa!

Intuition on Independent Component Analysis

Estimate B, ”inverse” of the mixing A, so that
ŝ(t) = y(t) = Bx(t) has statistical independent components

One can prove the solution is non unique, with scale and
permutation indeterminacies.
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Model and solution

First algorithm

Adaptive algorithm (GRETSI 1985, [HJA85])

Due to scale indeterminacy → B with 1 on the main diagonal

Tuning the bij : ∆bij(t) = µg(yi (t).h(yj(t)), where g(.) and
h(.) are NL odd functions,

∆bij(t) = 0 if E [g(yi (t).h(yj(t))] = 0, i.e., yi and yi approx.
stat. indép.

Intuitively

E [yi (t).yj(t)] → only decorrelation of yi and yj
Decorrelation 6= Independance: it’s only a first step
With this rule, ∆bij = ∆bji which would imply a symetric B:
not relevant!

E [g(yi (t).h(yj(t))]→ approx. of independance of yi and yj

No proof identifiability/uniquenes and convergence (in 1985))
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Theoretical foundations

Context in middle of 1980’s

Decorrelation or independance?

In 1985, statistical independance is not usual:

With Gaussian assumptions, decorrelation is enough;
First workshop on HOS, Vail (Colorado) in 1989.

Boom of source separation

J.-F. Cardoso & P. Comon (1987-...): theoretical foundations of
ICA.

Source separation & ICA: discussed in a very active working group
du GdR TDSI/Isis since 1988, up to 2000

Working Group européen ATHOS (1992-1995) managed by
P.Comon

Interest of the“neural networks” community latter, after 1995 with
Bell & Sejnowski (USA), Oja & Hyvärinen (Finland), Amari &
Cichocki (Japan)
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Theoretical foundations

Is the problem solvable?

• Darmois’Theorem (1953) [Dar53] Let be sn stat. independent
random variables, and

x1 =
∑

n

ansn et x2 =
∑

n

bnsn.

Then, if x1 and x2 are stat. independent, too:

if sn is non Gaussian then anbn = 0

if anbn 6= 0 then sn is Gaussian

Conclusion: impossible if sn Gaussian AND independent and
identically distributed (iid)
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Theoretical foundations

When is the problem solvable?

• Darmois ⇒ sn iid AND NON Gaussian (sufficient condition)
Leads to ICA, based on high-order statistics (HOS)

Static mixing x = As: if xi pairwise independent, then
A = PΛ, typical indeterminacies (Comon 1991)

Limitation: if x = Agsg + Ahsh
with sg Gaussian, then Ag is never identifiable (example:
additive Gaussian noise, or some Gaussian sources).

• Darmois ⇒ sn NON iid AND Gaussian (sufficient condition)
Leads to second-order statistics (SOS) methods

identically distributed AND NON independent: colored signals
(AMUSE, Tong et al., 1990; SOBI, Belouchrani et al. 1997)

independent AND NON identically distributed: nonstationary
signals (Matsuoka et al., 1995; Pham, Cardoso, 2001)
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Theoretical foundations

Identifiability results

Linear ”instantaneous” mixtures

Comon in HOS 1991 and SP 1994 [Com94]
Assumption: iid sources, mutually independent with at most
one Gaussian, regular mixing matrix
A identifiable up diagonal D and permutation P matrices ⇒
sources with scale and permutation undeterminacies

Linear convolutive mixtures

Yellin and Weinstein in IEEE T. on SP, 1994 [YW94]
Assumption: sources mutually independent with condition on
cross-spectra, invertible mixing matrix (with entries are LTI
filters)
A identifiable up diagonal D(z) and permutation P matrices
⇒ sources with unknow filter and permutation
undeterminacies

Nonlinear mixtures See Part II
Christian Jutten Campinas and Rio, June 2024 10 / 63
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Theoretical foundations

Other approaches and priors

Source separation in transformed domains

Consider a mapping T which preserves linearity (e.g., Fourier
transform, DCT, wavelet transform...)
x(t) = As(t) becomes:

T (x(t)) = AT (s(t) (1)

x(ν) = As(ν) (2)

Solving in the transformed domain (can be simpler)
Then, use T −∞ for coming back in the initial domain

Results based on other priors

Bounded sources
Discrete-valued sources (e.g., in communications)
Nonnegative sources and mixtures (in time or spectral
domains)
Sparsity... key to solve underdetermined source separation
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Theoretical foundations

Many algorithms and applications

First algorithms

CoM (Contrast Maximization): Comon 91 [Com92]

Joint diagonalization: JADE (1993), [CS93]

AMUSE (1990), SOBI (93), etc. [BAM93]

Equivariant algotithm (Cardoso, Laheld, 1994) [CL96]

Infomax (Bell, Sejnowski, 1995) [BS95], FastIca (Hyvärinen,
Oja, 1999) [Hyv99]

Applications

Speech and music enhancement and separation

Biomedical engineering: ECG, EEG, EMG, ...

Hyperspectral imaging

Chemistry and physics
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Success stories

Why such a success?

ICA much powerfull than PCA, and with physical meaning

mixing models (even very simple) relevant for various
applications

rigourous theoretical foundations

efficient algorithms, with proof of convergence

And above all, an important swarm in the Gdr ISIS!
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Success stories

French GdR ISIS plays an essential role

Working Group: HOS and source separation

From 1988 to 2004: 3 to 4 1-day meetings per year

Managed by J.-F. Cardoso and then E. Moreau

Friendly meetings; tutorial, PhD talks, discussions

Strong interactions: academics, industrials and PhD students

About 35 PhD on BSS in France defended from 1991 to 2004

GdR ISIS funded collaborative projects

With support of ”Club of industrial parters”

E.g., in 2000, Févotte, Vincent and Gribonval received grant
for developping international competition for speech/music
source separation...
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Success stories

BSS Success Stories

Many awards

Many best paper and IEEE SPS awards, 2 CNRS Silver medals

Some European Research Council grants

Front page of Washington Post in 2014

Jean-François Cardoso
CNRS Silver Medal
in 2014

Pierre Comon
CNRS Silver Medal 

in 2018

Front page of Washington Post in 2014

Vincent, Févotte and Gribonval in the 
spotlight at ICASSP 2024, in Seoul
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Part 2: Advances in nonlinear source separation

Christian Jutten with
Massoud Babaie-Zadeh, Leonardo Duarte, Bahram

Ehsandoust, Bertrand Rivet and Anisse Taleb
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Model and question

Model

K noiseless nonlinear (NL) mixtures of P independent sources
x(t) = A(s(t))

Question

Assuming the NL mixing mapping A is invertible, is it possible
to estimate an inverse mapping B using independence ?

In other words: output independence ⇔ s source separation ?

Christian Jutten Campinas and Rio, June 2024 17 / 63
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General results

Darmois’s results [Dar53]

Undeterminacy

Let si and sj be 2 independent random variables, fi (si ) and
fj(sj) are independent too

Source separation is achieved if yi = hi (sj), i.e. the global
mapping G = B ◦ A is diagonal, up to a permutation.

Such diagonal (up to a permutation) mappings G will be
defined as trivial mappings

Nonlinear mixtures are non identifiable using ICA

It always exists non diagonal nonlinear mixing mappings which
preserve independence

Darmois (1953) proposed a general method for constructing
such mappings. The idea has then been used by Hyvärinen
and Pajunen (1999 [HP99]).
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General results

A simple example

Consider 2 independent Gaussian variables x1 and x2 with joint pdf

px(x1, x2) = 1
2π exp

(
− x2

1 +x2
2

2

)

Consider the following mapping and its Jacobian
{

x1 = r cos θ
x2 = r sin θ

J =

∣∣∣∣
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

The joint pdf of r and θ is

prθ(r , θ) =

{
1

2π r exp(−r2) if (r , θ) ∈ R+ × [0, 2π]
0 otherwise

Althought r and θ are depending both of x1 and x2, they are statis-
tically independent!
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General results

Conclusions

General results

Statistical independence is not sufficient for insuring
identifiability of NL mixtures

For any sources, it exists invertible mappings with non
diagonal Jacobian (i.e. mixing or nontrivial mappings) which
preserve statistical independence→ generally, ICA not efficient

If the mapping can be identified, source can be recovered up
to a NL mapping (and permutation)

For overcoming the problem,

Approaches reducing the set of nontrivial mappings preserving
independence

Use additional priors, e.g., sparsity, non iid sources, Gaussian
processes...
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General results

Structural constraints: general results (1/3)

All these idea are detailed in the nice Taleb’s paper of IEEE Trans.
on SP [Tal02].

Trivial mappings: definition

Definition: H is a trivial mapping if it transforms any random
vector with independent components in another random
vector with independent components.

The set of the trivial mappings will be denoted Z

Trivial mappings: properties

A trivial mapping is then a mapping preserving independence
for any random vector

It can be shown that a trivial mapping satisfies
Hi (s1, . . . , sP) = hi (sσ(i)), ∀i = 1, . . . ,K

The Jacobian matrix of a trivial mapping is a diagonal matrix
up to a permutation
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General results

Structural constraints: general results (2/3)

There is an infinity of nontrivial mappings preserving independence

Constrained model of mixtures

If the mapping G = B ◦ A is constrained in the set C,
undeterminacies can be reduced, and hopefully cancelled

Consider Ω = {Fs1 , . . . ,FsP}, the set of signal distributions
such that ∃G ∈ C − Z (i.e., a non trivial mapping) which
preserves independence for any ω ∈ Ω

Ω then contains all the (particular) source distributions which
cannot be separated by mapping belonging to C.

Trivial mappings Z

Separation is then possible (1) for source distributions which
do not belong to Ω, (2) with indeterminacies in G ∈ Z ∩ CChristian Jutten Campinas and Rio, June 2024 22 / 63
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General results

Structural constraints: general results (3/3)

Example of linear memoryless regular mappings

C is the set of square regular matrices

Z ∩ C is the set of square matrices which are the product of a
diagonal matrix and a permutation matrix

Ω is the set of distributions which contain at least 2 Gaussian
sources (consequence of the Darmois-Skitovich theorem)
Trivial mappings Z

Conclusions

For linear memoryless mixtures, source separation is possible
using ICA (1) for sources which are not in Ω (i.e. at most one
Gaussian) and (2) with scale and permutation
undeterminacies.
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General results

Structural constraints: PNL mixtures

Post-nonlinear (PNL) mixtures

PNL are particular nonlinear mixtures, which structural
constraints : linear part, following by NL componentwise
mappings.

PNL are realistic enough : linear channel, nonlinear sensors

PNL identifiability (Taleb et al. 99, Achard et al. 05) with suited B
if (1) at most one source is Gaussian, (2) the mixing matrix
has at least two nonzero entries per row and per column, and
(3) the NL mappings fi are invertible and satisfy f ′i (0) 6= 0,
then y is independent iff gi ◦ fi is linear and BA = DP
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Chemical

Ion-selective sensors: the interference problem

Aim: to estimate concentrations of several ions in a solution.

Problem: the ion sensors are not very selective!
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Chemical

Solving the interference problem

Summary

Based on the Nicolski-Eisenman model

Method based on source silences (Duarte et al., Eusipco 2008
[DJ08])

Bayesian approach (Duarte et al., ICA 2009 [DJM09])

These works were done by L. Duarte during his PhD thesis in GIPSA-
lab (2006-2009)
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Chemical

The Nicolsky-Eisenman model (1/2)

xi (t) = ci + di log
(
si (t) +

∑

j ,j 6=i

aijsj(t)
zi
zj

)
, (3)

si (t)⇒ target ion concentration; sj(t)⇒ interfering ions
concentrations

ci , di , aij ⇒ mixing model parameters;

zi and zj ⇒ valences of the ions i and j

When zi = zj ⇒ Post-nonlinear (PNL) mixing model.

Additionnal conditions

We are interested in the case in which zi 6= zj .

We consider a scenario with two ions and two electrodes.
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Chemical

The Nicolsky-Eisenman model (2/2)

Nonlinear
Mixing
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Mixing Process Separating System

Resulting model for 2 sensors and 2 ions

x1(t) = d1 log
(
s1(t) + a12s2(t)k

)

x2(t) = d2 log
(
s2(t) + a21s1(t)

1
k

) , (4)

with k = z1/z2.
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Chemical

Assumptions

1 The sources are statistically independent;

2 The sources are positive and bounded, i.e.,
si (t) ∈ [Smin

i ,Smax
i ], where Smax

i > Smin
i > 0;

3 The mixing system is invertible in the region given by
[Smin

1 ,Smax
1 ]× [Smin

2 , Smax
2 ];

4 k (the ratio between the valences) is known and takes only
positive integer values;
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Chemical

Using the prior: one source is silent

Additional assumption: during some periods of time, the
concentration of one ion is constant (zero-variance).
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Chemical

Basic idea in equations

Nonlinear
Mixing
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Mixing Process Separating System

During the silent periods (s1(t) = S1 = cte):

p1(t) = S1 + a12s2(t)k

p2(t) = s2(t) + a21S
1
k

1

. (5)

In the (p1, p2) plane, we have a polynomial of order k :
p1(t) = S1 + a12(p2(t)− a21S

1
k

1 )k . (6)

p1(t) =
k∑

i=0

ϕip2(t)i , (7)

Idea: e1 must be a polynomial of order k, too
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Chemical

How to detect the silent periods?

During the silent periods of s1(t),

x1 = g1(s2)
x2 = g2(s2)

. (8)

→ maximum (nonlinear) correlation between x1 and x2

Normalized mutual information

ς(x1, x2) =
√

1− exp(−2I (x1, x2)) (9)

ς(x1, x2) = 0 when x1 and x2 are statistically independent;

ς(x1, x2) → 1 when there is a deterministic relation between
x1 and x2;
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Chemical

Result for silent periods detection

Christian Jutten Campinas and Rio, June 2024 33 / 63



History Nonlinear mixtures Conclusion Bibliography

Chemical

Motivations for using the Bayesian approach

Prior information is available

xit = ei + di log10


sit +

∑

j ,j 6=i

aijsjt

zi
zj


+ nit , (10)

ei takes value in the interval [0.05, 0.35]; (Gruen 2007)
Theoretical value for the Nerstian slope ⇒ di = RT ln(10)/ziF
(0.059V for room temperature); (Fabri et al, 2003)
Always non-negative. Very often in the interval [0, 1] ;
The sources are positive.

Takes noise into account;
In contrast to ICA, the statistical independence is rather a
working assumption in the Bayesian approach (Fevotte et al.
2006);
May work even if the number of samples is small.

Christian Jutten Campinas and Rio, June 2024 34 / 63



History Nonlinear mixtures Conclusion Bibliography

Chemical

Bayesian source separation method: problem and notations

Problem: given X, estimate the unknown parameters
θ = [S,A,d, e,σ,φ];

S ⇒ sources;

φ ⇒ sources hyperparameters;

A ⇒ selectivity coefficients;

d ⇒ Nerstian slopes;

e ⇒ offset parameters;

σ ⇒ noise variances.
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Chemical

Bayesian source separation method: an overview

Problem: given X, estimate the unknown parameters
θ = [S,A,d, e,σ,φ];

In the Bayesian approach, estimation of θ is based on the
posterior information

p(θ|X) ∝ p(X|θ)p(θ) (11)

The likelihood function is given by:

p(X|θ) =

nd∏

t=1

nc∏

i=1

Nxit


ei + di log




ns∑

j=1

aijs
zi/zj
jt


 , σ2

i


 ,

(12)
assuming an additive i.i.d. Gaussian noise vector which is
spatially independent.
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Chemical

Prior definitions

Log-normal prior distribution for the sources (non-negative
distribution)

p(sjt) =
1

sjt
√

2πσ2
sj

exp

(
−

(log(sjt)− µsj )2

2σ2
sj

)
1[0,+∞[(sjt),

(13)
Motivations

The estimation of φj = [µsj σ
2
sj ] is not difficult, since we can

define a conjugate pair.
Ionic activities are expected to have a small variation in the
logarithmic scale.

The sources are assumed i.i.d. and statistically mutually
independent:

p(S) =
ns∏

j=1

nd∏

t=1

p(sjt), (14)
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Chemical

Prior definitions (cont.)

Sources parameters φj = [µsj σ
2
sj

]

p(µsj ) = N (µ̃sj , σ̃
2
sj

), p(1/σ2
sj

) = G(ασsj , βσsj ) (15)

Selectivity coefficients aij : very often within [0, 1]

p(aij) = U(0, 1) (16)

Nernstian slopes di : ideally 0.059V at room temperature

p(di ) = N (µdi = 0.059/zi , σ
2
di

) (17)

Offset parameters ei lie in the interval [0.050, 0.350]V

p(ei ) = N (µei = 0.20, σ2
ei

) (18)

Noise variances σi :

p(1/σ2
i ) = G(ασi , βσi ) (19)
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Chemical

The posterior distribution

The posterior distribution is given by

p(θ|X) ∝ p(X|θ) ·
ns∏

j=1

nd∏

t=1

p(sjt |µsj , σ
2
sj

) ·
ns∏

j=1

p(µsj )

·
ns∏

j=1

p(σsj ) ·
nc∏

i=1

ns∏

j=1

p(aij) ·
nc∏

i=1

p(ei ) ·
nc∏

i=1

p(di ) ·
nc∏

i=1

p(σi )

(20)

Bayesian MMSE estimator ⇒ θMMSE =
∫
θp(θ|X)dθ

(Difficult to calculate!)

Given θ1,θ2, . . . ,θM (samples drawn from p(θ|X)), the
Bayesian MMSE estimator can be approximated by:

θ̃MMSE =
1

M

M∑

i=1

θi (21)
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Chemical

Results on real data

ISE array (NH+
4 − ISE and K+ − ISE )

Sources

ISE
Array
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Chemical

Results on real data (cont.)

nd = 169, SIR1 = 25.1 dB, SIR2 = 23.7 dB, SIR = 24.4 dB

(a) ISE array response. (b) Actual sources.

Since the sources are clearly dependent here, an ICA-based
method failed in this case.
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Chemical

Results on real data (cont.)

nd = 169, SIR1 = 25.1 dB, SIR2 = 23.7 dB, SIR = 24.4 dB

(a) ISE array response. (b) Retrieved signals.

Since the sources are clearly dependent here, an ICA-based
method failed in this case.
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Chemical

Conclusions on ion concentration estimations

Based on silence

Silence = kind of sparsity

Main limitations:

Number of samples in real applications may be small.
Many priors haven’t been used
The independence assumption may be rather strong, especially
if a regulatory process between ions exists.

Bayesian approach

A Bayesian nonlinear source separation is a flexible approach
for processing the outputs of an ion selective electrode array;

Good results are achieved even in tricky situations: (1)
dependent sources and (2) reduced number of samples.
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Problem and model

Show-through effect

Work developped by F. Merrikh-Bayat and M. Babaie-Zadeh,
Sharif Univ. of Technology (Merrikh-Bayat et al.
[MBBZJ08, MBBZJ11])

What is show-through?

Show-through, due to paper transparency and thickness,

Pigment oil penetration,

Vehicle oil component, due to loss of opacity,
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Problem and model

State-of-the-art

Often applied for texts and handwritting documents: 1-side
methods or 2-side methods,

ICA assuming

Linear model of mixtures (Tonazzini et al., 2007 ; Ophir,
Malah, 2007)
Nonlinear model of mixtures (Almeida, 2005 ; Sharma, 2001)

In this work, we consider:

modelisation of the nonlinear mixture,
blurring effect.
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Problem and model

Nonlinearity of show-through: experimental study

Evidence

Sum of luminance is NL.

Whiter the pixel, more important is show-through. More black
than black is impossible !
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Problem and model

Nonlinearity of show-through: mathematical model

Basic equation

Show-through has a gain which depends of the grayscale of
the front image

It leads to the model of mixtures:
{

f sr (x , y) = a1f
i
r (x , y) + b1f

i
v (x , y)g1[f ir (x , y)]

f sv (x , y) = a2f
i
v (x , y) + b2f

i
r (x , y)g2[f iv (x , y)]

where i = initial, s = scanned, r = recto, v = verso, ai and
bi denote unknown mixing parameters, and gi (.) denote
nonlinear gains
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Problem and model

Nonlinearity of show-through: mathematical model

The gain function is experimentally estimated by computing
[MBBZJ08]

{
g1[f ir (x , y)] = [f sv (x , y)− a1f

i
r (x , y)]/b1f

i
v (x , y)

g2[f iv (x , y)] = [f sv (x , y)− a2f
i
v (x , y)]/b2f

i
r (x , y)

Figure: Left: face and back sides of the printed sheet used in the experiment.

Right:plot of the right side of the above equation vs. f iv (x , y) or f ir (x , y), for each

pixel.
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Problem and model

Nonlinearity of show-through: mathematical model

Approximation of the gain function

The gain function can be estimated by an exponential:

{
g1[f ir (x , y)] = γ1 exp[β1f

i
r (x , y)] ≈ γ1(1 + β1f

i
r (x , y))

g2[f iv (x , y)] = γ2 exp[β2f
i
v (x , y)] ≈ γ2(1 + β2f

i
v (x , y))

It leads to the approximated mixing model:

{
f sr (x , y) = a1f

i
r (x , y) + b′1f

i
v (x , y)[1 + β1f

i
r (x , y)]

f sv (x , y) = a2f
i
v (x , y) + b′2f

i
r (x , y)[1 + β2f

i
v (x , y)]

And finally to the bilinear model:

{
f sr (x , y) = a1f

i
r (x , y)− l1f

i
v (x , y)− q1f

i
v (x , y)f ir (x , y)]

f sv (x , y) = a2f
i
v (x , y) + l2f

i
r (x , y)− q2f

i
r (x , y)f iv (x , y)]
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Problem and model

Separation structure

Recursive structure

Studied by Deville and Hosseini ([HD03, DH09])

{
f sr (x , y) = a1f

i
r (x , y)− l1f

i
v (x , y)− q1f

i
v (x , y)f ir (x , y)]

f sv (x , y) = a2f
i
v (x , y) + l2f

i
r (x , y)− q2f

i
r (x , y)f iv (x , y)]

who proposed the following recursive architecture suited to
the model: one equilibrium state is the solution
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Problem and model

Cancellation of show-through: preliminary results

Preliminary results with NL model

Bilinear model neither always invertible, nor always stable.

Parameters estimated by ML.

Comments

The other side image never perfectly removed, especially when
no superimposition!

It means difference between verso image and recto image is
not a simple gain

Diffusion in the paper ⇒ blurring effect, modelled by 2D filter.
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Problem and model

Improved model and recursive structure

Model with filtering

The mixture is not the nonlinear superimposition of the recto
(verso, resp.) image with the verso image, but with a filtered
version of the verso (recto, resp.) image, hence the final
separation structure
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Problem and model

Cancellation of show-through

Final results with NL modeling and filtering
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Problem and model

Removing Show-Through in Scanned images: conclusions

Summary

Show-through is a NL phenomenon which can be modeled by
bilinear mixtures.

In addition, the blurring effect can be modelled by a 2-D filter.

Experimental results show the mixture model has to take into
account both NL and convolutive effects.

Other priors, like positivity of images, and of the coefficients
could be exploited, e.g. by NMF or Bayesian approaches.
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Two recent ideas

Nonlinear model: Local linear approximation (1/2)

A simple idea (Ehsandoust et al., LVA-ICA 2015 and IEEE T. SP
2016 [EBZRJ17])

inspired by Levin’s paper (2010)

Deriving the nonlinear (time-invariant) mixture leads to

x(t) = A(s(t))→ ẋ(t) = JA,t ṡ(t) (22)

i.e. a linear time-varying mixtures, due to the Jacobian matrix
JA,t .

s1	

s2	
d/dt	 JA,t	 JB,t	

y1	

y2	

unknown	
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Two recent ideas

Nonlinear model: Local linear approximation (2/2)

x(t) = A(s(t))→ ẋ(t) = JA,t ṡ(t)

s1	

s2	
d/dt	 JA,t	 JB,t	

y1	

y2	

unknown	

Separability

Separability of linear mixtures, up to scale and permut + cte

Require statistical independence of ṡr , r = 1, . . .R

Algorithm

Since J f ,t is linear time-varying

convergence requires slowly varying sources

adaptive separation algorithm, inspired by EASY (Laheld,
Cardoso, 1996)
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Two recent ideas

Nonlinear mixture of Gaussian process sources (1/2)

Sources as Gaussian processes

Source separation in linear mixture can be achieved by
considering relation between successive samples

We propose to consider sources as Gaussian Processes, i.e.
sr (t) ∼ GP(m(t); k(t, t ′))

GP are very flexible for modeling large range of colored signals

	
	
	
	
	
	
e

�
�(t�t0)2

2⇥l2

�
l	=	0.5	l	=	3	
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Two recent ideas

Nonlinear mixture of Gaussian process sources (2/2)

GP property of sources is lost when mapped with NL polynomials.

Theorem (Ehsandoust et al., ICASSP 2017 [ERBZJ17])

Let R sources, s1, . . . , sR , be jointly Gaussian processes mixed by an
invertible polynomial P, i.e. y = P(s). The mapping y is jointly
Gaussian distributed iff y = P(s) = As + c , where A is a R × R
matrix and c is a R × 1 vector with scalar entries.

Source separation in 2 steps (Ehsandoust et al. [ERBZJ17])

Recovering GP property cancels the nonlinear part of the
mapping

A simple linear demixer can then estimate the GP sources.

NL	mixture	 GP	
transformer	

Linear		
demixer	

Gaussian 
 processes 

sources 

NL Mixtures  
are no longer 

GP 

s(t) x(t) 

GP recovery 
leads to linear  

mixtures 

z(t) y(t) 

Estimated 
GP sources 
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Take home message

Conclusions

Independence is not sufficient for insuring identifiability and
separability in general nonlinear mixtures

Independence ⇒ identifibility and separability in constrainted
NL mixtures, e.g., PNL, bilinear, linear-quadratic models

Priors on sources, e.g. bounded, sparse, non-negative or
colored sources, can (1) provide simpler separation criterion,
and (2) reduce solution indeterminacies.

Many problems require nonlinear models: chemical sensor,
scanned image processing, hyperspectral imaging, ...

News ideas to be further investigated [Ehs17]

Replacing NL invariant model by a linear variant model

Considering non iid sources, e.g., with Gaussian processes
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