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{i?j} ML and Wireless: Challenges
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> In wireless networks and devices, it is difficult to make ML training
and inference in real time.

> The networks and devices are distributed, and heterogeneous, even
using different communication protocols.

» Inference on a device/access network needs data from other devices
and network locations as a collaborative effort.

» A major concern is energy efficiency, bandwidth limitations, privacy,
and security.



{i‘fﬁi} Many Use-cases of ML in Wireless Networks

> Smart Cities, Smart Grids, Autonomous Vehicles

» Personal Health Monitoring, Communication Infrastructure
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Number of Devices

Internet of Things and
Internet  Artificial Intelligence

1950- 1960- 1980- 2020-

» ML is still conceived for centrally collected data or private powerful
networks of processors having clean, easy to access, statistically rich
data, without communication delays or bandwidth limitations

» Traditional ML is challenged by wireless networks

» Current wireless networks are inefficient for ML services



Pt % ML and Wireless Research

2. Distributed ML over Wireless

3. ML for Wireless 1. Wireless for ML

» ML over Wireless Networks is concerned with

» Distributed model training
» Distributed inference

» We can use ML in wireless networks for
1. redesign or adaptation of wireless access protocols to support ML/AI
services;
2. ML services over wireless networks;
3. data-driven redesign and management of the network (e.g.,
channels, handover predictions, resource allocations).

in difficult



> “The Americans have need of the telephone, but we do not. We have
plenty of messenger boys”. Sir William Preece, Chief Engineer of the

British Post Office, 1876.

> “Cellular phones will absolutely not replace local wire systems”. Marty
Cooper, the father of the cell phone, 1974



Analog Over-the-Air Computation: OAC



f:%i% Over-the-Air Computation (OAC)
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» In Federated Learning, the model/gradient sum at the central server
can be “automatically computed” by wireless interference.

> The devices transmit simultaneously over the same channels, which
leads to a natural sum:

g(t) = ka(t)7 t
k

1,2

(1)

> Potentially, tremendous energy, frequency, privacy, security, and
efficiency benefits!



Pt OAC Uses Analog Modulations
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#1(t) = 3cos(fet)
y(t) = 12cos(fct)
xry = 3

Over the Air
Z(t) = 9cos(fct)
xo =9 /

The OAC state-of-the-art assumes Amplitude Analog Modulations.



Analog Over-the-Air Computation: OAC
State-of-the-art
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History of OAC

sen(eq)
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Xa(t)
Digital OAC for signSGD
Sﬁs‘){i’:f;]“w using BPSK and QPSK|[4]
- --—-———--—- -@--——--——-@---—————— - & -------- -
OAC for federated -
Information-theoretic edge learning (3] f;f;";‘;ﬁ ’;’;5,“;{,;’;[‘5?
performance bounds [1]
2009
2020

[1] B. Nazer et al, “Reliable computation over multiple-access channels,” in Allerton Conf. on Commun.,

Control, and Computing, 2005

[2] M. Goldenbaum et al., “On function computation via wireless sensor multiple-access channels,” in

IEEE Wire. Commun. and Net. Conf., 2009

[8] G. Zhu et al., “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans.
on Wire.Commun., 2019

[4] G. Zhu et al., “One-bit over-the-air aggregation for communication-efficient federated edge learning:
Design and convergence analysis,” IEEE Wireless Commun., 2020

[5] A. Sahin et al., “Distributed learning over a wireless network with FSK-based majority vote,” in 8

IEEE CommNet, 2021




State-of-the-art (1/2)
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#

Topic Ref. Summary
Broadband 3] FL using AirComp over broadband channels
Analog with truncated channel inversion to handle
Aggregation fading.

(6] Sparsification of gradients combined with error
Gradient accumulation for compression.
Sparsification [7] Extension of [6] to consider fading channels,

uses truncated channel inversion.

[8] Performance comparison of [7] scheme, se-
quential digital transmission, and BAA.

9] Utilization of temporal structures in the gra-
dient updates to form a Bayesian prior in the
gradient estimation step.

Federated [10] Trains by communicating model outputs in-

Distillation stead of model parameters. Over-the-air com-
putation is used to combine model output vec-
tors for each class.

[6] M. M. Amiri et al., “Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent
Over-the-Air,” IEEE Transactions on Signal Processing, vol. 68, pp. 2155-2169, Mar. 2020

[7] M. M. Amiri et al., “Over-the-Air Machine Learning at the Wireless Edge,” in SPAWC, TEEE, Aug.
2019, pp. 1-5

[8] M. M. Amiri et al., “Federated Learning over Wireless Fading Channels,” IEEE Trans. on Wire. Com-
mun., vol. 19, no. 5, pp. 3546-3557, Feb. 2020

[9] D. Fan et al.
Learning,” arXiv, vol. abs/2103.02270, Mar. 2021

[10] J.-H. Ahn et al., “Wireless Federated Distillation for Distributed Edge Learning with Heterogeneous
Data,” in PIMRC, IEEE, Jul. 2019, pp. 1-6

“Temporal-Structure-Assisted Gradient Aggregation for Over-the-Air Federated Edge




State-of-the-art (2/2)

s e

#

Topic Ref. Summary

Training with [11] Proposal of gradient-based multiple-access

Noisy Gradients scheme that does not cancel the fading effect
but operates directly with noisy gradients.

[12] Convergence rate analysis for gradient-based
multiple-access.

Data Sharing [13] DSGD training using combined gradients. In-
troduces data redundancy to combat non-IID.
data.

Analog Federated | [14] Second-order training algorithm with CoMAC

ADMM communication.

» For a detailed exposition of the literature, see [15].

[11] T. Sery et al., “A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading
Channels,” in Allerton, IEEE, Dec. 2019, pp. 303-307

[12] T. Sery et al., “On Analog Gradient Descent Learning over Multiple Access Fading Channels,” [EEE
Trans. on Sig. Proc., vol. 68, pp. 2897-2911, Apr. 2020

[13] Y. Sun et al., “Energy-Aware Analog Aggregation for Federated Learning with Redundant Data,”
in ICC, IEEE, Jul. 2020, pp. 1-7

[14] A. Elgabli et al., “Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated

Learning,” IE Trans. on Commun., May 2021

[15] H. Hellstrém et al., “Wireless for machine learning: A survey,”

90-399, 2

Foundations and Trends@® in Sig. Proc.,
® g
2

vol. 15, no. 4, pp.



Analog Over-the-Air Computation: OAC

OAC Federated Learning with Retransmissions

10
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OAC Introduces Estimation Errors

(

v O 'y'r’f'“'ﬁw —

|
| Wireless Channel| ‘,}M\Wﬂ«m’w

Wi E))))H WWW’M ! ‘ LYK hyw + 2

(1))

» OAC deliberately generates interference over the wireless channel

» The desired function is estimated using the superimposed received signal
> The individual model parameter vectors wy are never recreated at the receiver

» Due to the analog modulations, channel attenuation and additive noise, there are
inevitable estimation errors

11
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Feras  Dstimation Errors
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With heterogeneous fading and additive noise, the received signal is a noisy and
distorted sum of the transmitted messages

> y[t]=2£{: %J’_ \Eﬂ

> Given independent Gaussian sources and global channel knowledge, the
minimum mean-squared error estimator (MMSE) is biased [16]

Punaxhil®
> * min g +L —1 f'max
n i SE_| Praxlhil

» 1% _ P [t]H n*
bf = i min (Pmax, 7z

Even with optimal estimation, significant estimation errors, due to bias, remain

v

> How do we reduce them?

[16] X. Cao et al., “Optimized power control for over-the-air computation in fading channels,” /EEE Transactions on

Wiareless Communications, vol. 19, no. 11, pp. 7498-7513, 2020

12



Analog Over-the-Air Computation: OAC

Static Retransmissions

12



Fxrnts Retransmissions over Static Channels
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» With M — 1 retransmissions over block-fading static channels, the received signal
becomes

syl = & M (Z - hk[t]i’}cﬁ[t]wk 4 Z[f/,g%])

> Signal-part interferes constructively, while ergodic noise leads to destructive
interference

> Federated Learning algorithm with retransmissions:
1. Random model initialization
2. Broadcast model in downlink
3. Local training at User Devices

4. form=1: M

4.1 Uplink OAC aggregation of model updates
Compute mean at Access Point
Repeat 2-5 until convergence

o o

13



Fxrns Retransmissions over Static Channels
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> With standard tools from convex optimization theory, we can prove upper
bounds on over-the-air federated learning convergence with retransmissions [17]

> Let I
n
=1-2 2
C2 BM I L’ ( )
and
K 2
do
cs = F[|o|”K ) prlhal® + 7 (3)
k=1
Then,
E[F(wn)] - F(w*) <
L Lc
OB+ — @
2 (Zk:l vpk|hk‘) (1—c2)
[17] H. Hellstréom et al., “Federated learning over-the-air by retransmissions,” IEEE Transactions on Wireless Communi-
cations, vol. 22, no. 12, pp. 9143-9156, 2023

14



KTH“* Retransmissions over Static Channels
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o M=1 % Unaware M = 2 o
l— M =2 o L Aware M =2 n/;éfa"*
s M =4 / Unaware M = 8 /

— M =8 . B —— Aware M =8 /

Estimation error
o
\ %
%
¥
Estimation error
B
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> MSE-minimizing power control is dependent on the number of retransmissions,
i.e., the devices should be aware of M when selecting their transmission powers

> MSE reductions are expensive compared to channel codes, but offer a first step
toward enabling an estimation-communication tradeoff

15
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0.0
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Communication Round

Retransmissions improve
post-convergence accuracy

More expensive in terms of
communication

i ’%% Retransmissions over Static Channels

09 — e —

03

02 ~—_

=t 08 \

] | -

2 o} _ Bias term
aa] .

© 08 — Noise term
S os

S o 1/M

=

[

=

3

&)

01

> Noise-related term falls of at
approximately 1/M

> Slight decline in bias-related term
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Analog Over-the-Air Computation: OAC

Fast-fading Retransmissions

16
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> OAC function estimation is plagued by bias
> We can exploit the time-diversity of fast fading to reduce the bias

> With tools from Algorithm Analysis, we prove that the optimal causal power
control scheme follows a greedy approach [18]

— (W (1_ D |hk]\[;'];%[¢]) fﬁ) %)

[18] H. Hellstrom et al., “Unbiased over-the-air computation via retransmissions,” in IEEE Global Communications

Conference, 2022, pp. 782787

17



—x—bias? =112
—p— MSE 5=112

—%—bias? =2

—o— MSE 7,=2

MSE /bias?

> Rapid decrease in bias
» MSE floor that depends on choice of
post-transmission scalar n

> More efficient tradeoff than for
static channels

0.9

08

07
//
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/
//
—— empirical 7,=1/4
—— approximation ,=1/4

//|—+— empirical =112

0.6

0.5

0.4
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Pr (unbiased)

; —o— approximation 7=1/2
01 —&— empirical 7,=1

/ 4 approximation ;=1
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» Without retransmissions (M = 1),
estimator bias is inevitable

> Unbiased probability increases
toward 100% within finite number
of retransmissions

18



Take-home Message

> The quality of the estimation provided by OAC can be significantly
improved by retransmissions.

» Over-the-air computation introduces a bias.

> Power control and retransmissions can help to significantly reduce or
eliminate the bias, especially for fast-fading channels

19



Digital Over-the-Air Computation: ChannelComp
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Digital Over-the-Air Computation: ChannelComp
Issues with Digital Modulations

19



z1 =3 = (0011)

2 =9 = (1001)3

N
| I
| | A Digital Modulation

» OAC with digital modulations seems unfeasible, because the
overlapping of digital waveforms returns incomprehensible signals.

20



Research Gap in OAC and Digital Modulations

Methods
ethods Analog Modulation Digital Modulation

31, [21]

Subjects
Papors o B, 9] | [20]

Spectral Efficiency

=

AV IR AN R R ANAN AN

Ours

Low Latency
BPSK and QPSK
QAM 16, 32

Analog Modulation

Sign Function

Nomographic
Functions

General Functions

R IR RN R SN
|| N3] N[ %x|x|x
ANEIER RN SRR NENEN
AR R NE SRR IR IR
ANRNERNRNENENENENEN

Ubiquitous
implementation

v/: Performance is very good! X: It is not studied at all.

[19] M. Goldenbaum et al., “Robust analog function computation via wireless multiple-access channels,”
IEEE Trans. on Commun., 2013

[20] A. Sahin et al., “Distributed learning over a wireless network with FSK-based majority vote,” in
IEEE CommNet, 2021

[21] A. Sahin, “A demonstration of over-the-air computation for federated edge learning,” in [EEE
Globecom Workshops, 2022

[22] A. Sahin et al.,, “Over-the-air computation over balanced numerals,” in [EEE Globecom Workshops,

2022

21



»ﬁ@"&: Our Goal with ChannelComp
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» Create OAC methods that are inherently built for digital

communications.

» The methods should be able to perform the computation of any

function f(z1,...,rK) over-the-air, where the inputs belong to

different units/nodes.
» The key idea: rethink how the receiver works!

22



Digital Over-the-Air Computation: ChannelComp

Key Idea of ChannelComp

22
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%gg“’@% Key Idea: a GOOD Example for BPSK Modulation

TG} =21 + 22

0 1
-7 T 0 1 2
0 1 Over-the-Air

-2 0 )
0 1 - -
11 /

0 0 1
0 1
T2y} = m122

We can attach mechanically the value of the computation to a received
constellation point.

23



Over-the-Air

By assigning specific values to the reshaped constellation points, QPSK
modulation enables the computation of the summation function.

24



Over-the-Air

6o

The overlaps of the reshaped constellation points of QPSK modulation do
NOT allow us to compute the product function.
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Key Idea: the General Case of ChannelComp
FO = fx) XD oo @Dy
L) ;
R. Ry -1 ! (x( ))
Vw_“j )
]

Domain of f Range of ¥, @, Range of f

» Because of the input «x is digital, the domain of f is over a finite set.
> In a noise-free channel, the constellation points at the receiver are finite.

> Consider two inputs z() and z(9) that generate two different function’s
output £ and fO):

> if §; # §;, we can associate the value f(i> to §;, and f(j) to 8.
> if §; = §;, we cannot make the correct association, unless we enforce a splitting of
§; and §; by a proper encoding.

26



> Attributed to Aeneas Tacticus, 4th century BC.

» Used to send messages between Sicily and Carthage (modern
Tunisia) [23].
> The water levels were associated with (possibly complex) messages.

> The water levels do not mean anything by themselves, it is their
association/mapping to messages that is meaningful.

[23] Polybius: The Histories. Loeb Classical Library (in Ancient Greek, English, and Latin). Translated by Paton,
W.R. Chicago; University of Chicag, 2012

27



Digital Over-the-Air Computation: ChannelComp

Constellation Design

27



ﬁ’%ﬁ?‘ﬂ ChannelComp’s Problem Formulation
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Goal: Find the constellation encoder &(-) and the mapping 7{-} to do the
computation for a given quantisation Q(-):

! i
e

28



FO = £

Domain of f Range of 3, @ Range of f

To find the encoder, we pose the following feasibility optimization

Pl = ﬁnd X
s.t. FO % 9D =5 £ 5, Y6,5) e [M]?,
Ix[3 < P.

29
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{é%}&% ChannelComp 1: Any Modulation

Proposition (Necessary condition [24])

Let the K multivariate function f(z1,x2,...,zk) with domain Dy, where x}, € Dy for k € [K]
be a symmetric function, i.e.,

flz, ... zk) = f(m(z1), ..., m(zK)), (7)
for all possible permutations by 7 : {1,..., K} — {1,...,K}. Let each node use the identical

modulation &. Then, function f can be computed by the constellation diagram of 25:1 & (zg)-

[24] S. Razavikia et al., “ChannelComp: A general method for computation by communications,” IFEE
Transactions on Communications, 2023. DOI: 10.1109/TCOMM.2023.3324999

4
Proposition ([24])
Let e ' > max(i J)e[M]2 |f(i) - f(j)\z. Then, Problem Pq is feasible, and thus there exists a
modulation vector x satisfying the constraints.

4
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Theorem (MAE Analysis [25])

Under the same conditions given in [25, Theorem 1],

MAE(f) := E{|f — fI}, < wy (\/dFe1 + d3e2), (8)

where wy, signifies the modulus of continuity o an extension of Lipschitz continuity).
» Sig y p Y

[25] S. Razavikia et al., SumComp: Coding for digital over-the-air computation via the ring of integers, 2023. arXiv:

2310.20504 [cs.IT]

{E%?% ChannelComp 2: q-QAM by the Ring of Integers (SumComp)

° 9p() cole o o o o' 0o o

except for f := 'z/)(sz=1 Ok (sk)), we have

31
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ChannelComp 3: SumComp for Blind Federated Learning

w(m) =

w(m —1)= ng(m — 1)

Local Dataset Dy

/I 1= g1(m) Hg.(m) VL1 (w(m)) \ -

(m g1 (m)/ KK

w(m) = w(m — 1)— ng(m — 1)
I,_‘ sk = gic(m) HgK (m) = VLx(w(m)

Local Dataset Dy
wm+1) = W(m) — ng(m)

Proposition (Number of Antennas [26])

Let g € CIN be the global gradient averaged by the ES, and & be the estimated gradient of g. Then, with probability no
less than 1 — &, the error of the estimated gradient, &, as well as the MSE of &, are bounded by scalar o2 4, i.c.,

- =12 2 2

g — &l < efaq Ellg — &l7] < ofaq + 95> (9)

N~2
where afad = e—mﬁLu + 21n (6K)2), if the number of antennas, Ny-, is greater than
N mln
16 N
M In (%), where Ymax i= Maxp Yn, Cmin ‘= Minp cn, and q is the order of modulations.
fad min
[26] S. Razavikia et al., Blind federated learning via over-the-air ¢-QAM, 2023. arXiv: 2311.04253 [eess.SP]
v
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Digital Over-the-Air Computation: ChannelComp

Numerical Results

32



%ﬁ%}% Simulations Setup

» ChannelComp performance is compared to
> OFDMA.
» OAC, which uses analog modulation.

> Functions tested with K = 4 nodes:
> fi= 22:1 Tk
> f2=Tlhoy e
» fa=3r_1 a
> fa = maxy zj,

for z, € {0,1,2,...,7}
> Input signals transmitted over an AWGN channel.

» NMSE used to characterize computation error over Ny = 100 Monte
Carlo trials for different SNRs.

33
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I I I 10* T T T
—&— ChannelComp
—e— OFDMAY,
—&— AirCompy
A —&— ChannelComp [
P —a— OFDMAJ]
[ —— AirComp] |

Tmag(x)
NMSE

Real(x) SNR

> Thanks to constructive overlaps of the reshaped modulation, ChannelComp
outperforms AirComp and OFDMA with more than 10 dB improvement for
the product function.
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Conclusions
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> In ML over networks, we will often encounter the problem of
computing functions from distributed units connected by wireess
multiple access network (MAC)

» Our work is the first attempt to propose general digital modulations for
function computation over the MAC.

» The proposed ChannelComp properties:

Ultra-low-latency

General functions computation

Any digital modulations

Simple communication architecture

Integration of both the encoder and modulation

Extension of OAC (it works for analog as well)

vyVYyVvYVvVVvYyey

> Generalization to MIMO, fading channels, asynchronous, etc.

» Applications of ChannelComp for, e.g., federated edge learning, or
distributed sensing problems.
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