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ML and Wireless: Challenges

§ In wireless networks and devices, it is difficult to make ML training
and inference in real time.

§ The networks and devices are distributed, and heterogeneous, even
using different communication protocols.

§ Inference on a device/access network needs data from other devices
and network locations as a collaborative effort.

§ A major concern is energy efficiency, bandwidth limitations, privacy,
and security.
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Many Use-cases of ML in Wireless Networks

§ Smart Cities, Smart Grids, Autonomous Vehicles

§ Personal Health Monitoring, Communication Infrastructure
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But ML is Still Conceived for Past Technological Revolutions!

§ ML is still conceived for centrally collected data or private powerful
networks of processors having clean, easy to access, statistically rich
data, without communication delays or bandwidth limitations

§ Traditional ML is challenged by wireless networks

§ Current wireless networks are inefficient for ML services
3



ML and Wireless Research

§ ML over Wireless Networks is concerned with
§ Distributed model training
§ Distributed inference

§ We can use ML in wireless networks for
1. redesign or adaptation of wireless access protocols to support ML/AI

services;
2. ML services over wireless networks;
3. data-driven redesign and management of the network (e.g., in difficult

channels, handover predictions, resource allocations).
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Do We Need Communication Protocols for ML Computations?

§ “The Americans have need of the telephone, but we do not. We have
plenty of messenger boys”. Sir William Preece, Chief Engineer of the
British Post Office, 1876.

§ “Cellular phones will absolutely not replace local wire systems”. Marty
Cooper, the father of the cell phone, 1974
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Over-the-Air Computation (OAC)
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§ In Federated Learning, the model/gradient sum at the central server
can be “automatically computed” by wireless interference.

§ The devices transmit simultaneously over the same channels, which
leads to a natural sum:

y⃗ptq “
ÿ

k

x⃗kptq, t “ 1, 2, . . . (1)

§ Potentially, tremendous energy, frequency, privacy, security, and
efficiency benefits!
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OAC Uses Analog Modulations

Over the Air

x1 “ 3

x2 “ 9

“ 12

x⃗1ptq “ 3 cospfctq

The OAC state-of-the-art assumes Amplitude Analog Modulations.
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History of OAC

2005

Information-theoretic
performance bounds [1]

2009

OAC for sensor
networks[2]

2018

OAC for federated
edge learning [3]

2020

Digital OAC for signSGD
using BPSK and QPSK[4]
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2021

Extending Digital OAC
using FSK and PPM[5]

MV

.

.

.

sgnpx1q

sgnpx2q

sgnpxK q

X2ptq

X1ptq
X3ptq

XkptqXkptq

...

...

H1
H2

H3

HkHK

Y ptq

[1] B. Nazer et al., “Reliable computation over multiple-access channels,” in Allerton Conf. on Commun.,

Control, and Computing, 2005

[2] M. Goldenbaum et al., “On function computation via wireless sensor multiple-access channels,” in

IEEE Wire. Commun. and Net. Conf., 2009

[3] G. Zhu et al., “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans.

on Wire.Commun., 2019

[4] G. Zhu et al., “One-bit over-the-air aggregation for communication-efficient federated edge learning:

Design and convergence analysis,” IEEE Wireless Commun., 2020

[5] A. Şahin et al., “Distributed learning over a wireless network with FSK-based majority vote,” in

IEEE CommNet, 2021
8



State-of-the-art (1/2)

Topic Ref. Summary

Broadband
Analog
Aggregation

[3] FL using AirComp over broadband channels
with truncated channel inversion to handle
fading.

Gradient
Sparsification

[6] Sparsification of gradients combined with error
accumulation for compression.

[7] Extension of [6] to consider fading channels,
uses truncated channel inversion.

[8] Performance comparison of [7] scheme, se-
quential digital transmission, and BAA.

[9] Utilization of temporal structures in the gra-
dient updates to form a Bayesian prior in the
gradient estimation step.

Federated
Distillation

[10] Trains by communicating model outputs in-
stead of model parameters. Over-the-air com-
putation is used to combine model output vec-
tors for each class.

[6] M. M. Amiri et al., “Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent

Over-the-Air,” IEEE Transactions on Signal Processing, vol. 68, pp. 2155–2169, Mar. 2020

[7] M. M. Amiri et al., “Over-the-Air Machine Learning at the Wireless Edge,” in SPAWC, IEEE, Aug.

2019, pp. 1–5

[8] M. M. Amiri et al., “Federated Learning over Wireless Fading Channels,” IEEE Trans. on Wire. Com-

mun., vol. 19, no. 5, pp. 3546–3557, Feb. 2020

[9] D. Fan et al., “Temporal-Structure-Assisted Gradient Aggregation for Over-the-Air Federated Edge

Learning,” arXiv, vol. abs/2103.02270, Mar. 2021

[10] J.-H. Ahn et al., “Wireless Federated Distillation for Distributed Edge Learning with Heterogeneous

Data,” in PIMRC, IEEE, Jul. 2019, pp. 1–6
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State-of-the-art (2/2)

Topic Ref. Summary

Training with
Noisy Gradients

[11] Proposal of gradient-based multiple-access
scheme that does not cancel the fading effect
but operates directly with noisy gradients.

[12] Convergence rate analysis for gradient-based
multiple-access.

Data Sharing [13] DSGD training using combined gradients. In-
troduces data redundancy to combat non-IID.
data.

Analog Federated
ADMM

[14] Second-order training algorithm with CoMAC
communication.

§ For a detailed exposition of the literature, see [15].

[11] T. Sery et al., “A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading

Channels,” in Allerton, IEEE, Dec. 2019, pp. 303–307

[12] T. Sery et al., “On Analog Gradient Descent Learning over Multiple Access Fading Channels,” IEEE

Trans. on Sig. Proc., vol. 68, pp. 2897–2911, Apr. 2020

[13] Y. Sun et al., “Energy-Aware Analog Aggregation for Federated Learning with Redundant Data,”

in ICC, IEEE, Jul. 2020, pp. 1–7

[14] A. Elgabli et al., “Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated

Learning,” IEEE Trans. on Commun., May 2021

[15] H. Hellström et al., “Wireless for machine learning: A survey,” Foundations and Trends® in Sig. Proc.,

vol. 15, no. 4, pp. 290–399, 2022
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OAC Introduces Estimation Errors

w1

wK

Wireless Channel

1
K

řK
k“1 hkwk ` z

§ OAC deliberately generates interference over the wireless channel
§ The desired function is estimated using the superimposed received signal
§ The individual model parameter vectors wk are never recreated at the receiver

§ Due to the analog modulations, channel attenuation and additive noise, there are
inevitable estimation errors
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Estimation Errors

§ With heterogeneous fading and additive noise, the received signal is a noisy and
distorted sum of the transmitted messages

§ yrts “
řK
k“1

hkrtsbkrtswk?
η

`
zrts
?
η

§ Given independent Gaussian sources and global channel knowledge, the
minimum mean-squared error estimator (MMSE) is biased [16]

§ η˚ “ min
k

ˆ

σ2
z`

řk
i“1 Pmax|hi|2

řk
i“1 Pmax|hi|

˙2

§ b˚
k “

hkrtsH

|hkrts|2
min

´

Pmax,
η˚

|hk|2

¯

§ Even with optimal estimation, significant estimation errors, due to bias, remain

§ How do we reduce them?

[16] X. Cao et al., “Optimized power control for over-the-air computation in fading channels,” IEEE Transactions on

Wireless Communications, vol. 19, no. 11, pp. 7498–7513, 2020
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Retransmissions over Static Channels

§ With M ´ 1 retransmissions over block-fading static channels, the received signal
becomes

§ yrts “ 1
M

řM
m“1

´

řK
k“1

hkrtsbkrtswk?
η

`
zrt,ms

?
η

¯

§ Signal-part interferes constructively, while ergodic noise leads to destructive
interference

§ Federated Learning algorithm with retransmissions:
1. Random model initialization
2. Broadcast model in downlink
3. Local training at User Devices
4. for m “ 1 : M

4.1 Uplink OAC aggregation of model updates

5. Compute mean at Access Point
6. Repeat 2-5 until convergence
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Retransmissions over Static Channels

§ With standard tools from convex optimization theory, we can prove upper
bounds on over-the-air federated learning convergence with retransmissions [17]

§ Let

c2 :“ 1 ´ 2β
µL

µ ` L
, (2)

and

c3 :“ β2
||σ||

2K
K
ÿ

k“1

pk|hk|
2

`
dσ2

z

M
. (3)

Then,

E rF pwnqs ´ F pw˚
q ď

L

2
cn2Err20s `

Lc3

2
´

řM
k“1

?
pk|hk|

¯2

p1 ´ c2q

, (4)

[17] H. Hellström et al., “Federated learning over-the-air by retransmissions,” IEEE Transactions on Wireless Communi-

cations, vol. 22, no. 12, pp. 9143–9156, 2023
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Retransmissions over Static Channels

M “ 1

M “ 2

M “ 4

M “ 8

Unaware M “ 2

Aware M “ 2

Unaware M “ 8

Aware M “ 8

σz σz

§ MSE-minimizing power control is dependent on the number of retransmissions,
i.e., the devices should be aware of M when selecting their transmission powers

§ MSE reductions are expensive compared to channel codes, but offer a first step
toward enabling an estimation-communication tradeoff
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Retransmissions over Static Channels
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§ Retransmissions improve
post-convergence accuracy

§ More expensive in terms of
communication
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§ Noise-related term falls of at
approximately 1{M

§ Slight decline in bias-related term
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Optimal Precoder with Retransmissions over Fast-fading
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§ OAC function estimation is plagued by bias

§ We can exploit the time-diversity of fast fading to reduce the bias

§ With tools from Algorithm Analysis, we prove that the optimal causal power
control scheme follows a greedy approach [18]

bkrms
˚

“ min

˜

?
pmax,

˜

1 ´

m´1
ÿ

i“1

|hkris|bkris

M
?
η

¸

M
?
η

|hkrts|

¸

, (5)

[18] H. Hellstrom et al., “Unbiased over-the-air computation via retransmissions,” in IEEE Global Communications

Conference, 2022, pp. 782–787

17



Numerical Results over Fast-fading Channels

M
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§ Rapid decrease in bias

§ MSE floor that depends on choice of
post-transmission scalar η

§ More efficient tradeoff than for
static channels

M
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r

pu
n
b
ia
se
d

q
§ Without retransmissions (M “ 1),

estimator bias is inevitable

§ Unbiased probability increases
toward 100% within finite number
of retransmissions
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Take-home Message

§ The quality of the estimation provided by OAC can be significantly
improved by retransmissions.

§ Over-the-air computation introduces a bias.

§ Power control and retransmissions can help to significantly reduce or
eliminate the bias, especially for fast-fading channels

19



Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp
Issues with Digital Modulations
Key Idea of ChannelComp
Constellation Design
Numerical Results

Conclusions

19



Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp
Issues with Digital Modulations
Key Idea of ChannelComp
Constellation Design
Numerical Results

Conclusions

19



OAC Does not Work with Digital Modulations

Over-the-Air

x1 “ 3 “ p0011q2

‰ 12

x2 “ 9 “ p1001q2

1 0 0 1

? ?

0
1

Digital Modulation

fpx1, . . . , xKq

.

.

.
xK

x2

x1

10 0 1

§ OAC with digital modulations seems unfeasible, because the
overlapping of digital waveforms returns incomprehensible signals.
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Research Gap in OAC and Digital Modulations

Subjects

Methods
Analog Modulation Digital Modulation

Papers [2], [3], [19] [20] [4] [5], [21] [22] Ours

Spectral Efficiency ✓ ✗ ✓ ✗ ✓ ✓

Low Latency ✓ ✗ ✓ ✗ ✓ ✓

BPSK and QPSK ✗ ✗ ✓ ✗ ✓ ✓

QAM 16, 32, . . . ✗ ✗ ✗ ✗ ✗ ✓

Analog Modulation ✓ ✓ ✗ ✗ ✗ ✓

Sign Function ✗ ✗ ✓ ✓ ✓ ✓

Nomographic
Functions

✓ ✓ ✗ ✗ ✗ ✓

General Functions ✗ ✗ ✗ ✗ ✗ ✓

Ubiquitous
implementation

✗ ✗ ✓ ✓ ✓ ✓

✓: Performance is very good! ✗: It is not studied at all.

[19] M. Goldenbaum et al., “Robust analog function computation via wireless multiple-access channels,”

IEEE Trans. on Commun., 2013

[20] A. Şahin et al., “Distributed learning over a wireless network with FSK-based majority vote,” in

IEEE CommNet, 2021

[21] A. Şahin, “A demonstration of over-the-air computation for federated edge learning,” in IEEE

Globecom Workshops, 2022

[22] A. Şahin et al., “Over-the-air computation over balanced numerals,” in IEEE Globecom Workshops,

2022
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Our Goal with ChannelComp

fpx1, . . . , xKq

.

.

.
xK

x2

x1

§ Create OAC methods that are inherently built for digital
communications.

§ The methods should be able to perform the computation of any
function fpx1, . . . , xKq over-the-air, where the inputs belong to
different units/nodes.

§ The key idea: rethink how the receiver works!
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Key Idea: a GOOD Example for BPSK Modulation

Over-the-Air

´1⃗ 1⃗

´2⃗ 0⃗ 2⃗

0 1 2

x1

x1

T1ty⃗u “ x1 ` x2

x⃗2 “

x2

x2

´1⃗ 1⃗
x⃗1 “

T2ty⃗u “ x1x2

100

0 1

0 1

0 1

0 1

We can attach mechanically the value of the computation to a received
constellation point.
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Key Idea: a GOOD Example for QPSK Modulation (1/2)

Over-the-Air

01

x⃗1

03

2

1

03

2

1

x⃗2

x1 “ t0, 1, 2, 3u

x2 “ t0, 1, 2, 3u

0011

10

01

0011

10

2

fpx1, x2q “ x1 ` x2

4

6

4

5

1

0
3

2

By assigning specific values to the reshaped constellation points, QPSK
modulation enables the computation of the summation function.

24



Key Idea: A BAD Example for QPSK Modulation (2/2)

x⃗1

03

2

1

03

2

1

x⃗2

x1 “ t0, 1, 2, 3u

x2 “ t0, 1, 2, 3u

Over-the-Air

01

0011

10

01

0011

10

f1px1, x2q “ x1x2

0

0

0

0

1

3

9

6

4

2

The overlaps of the reshaped constellation points of QPSK modulation do
NOT allow us to compute the product function.
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Key Idea: the General Case of ChannelComp

0, . . . , 0xp1q

.

.

.

.

.

.

s⃗1

x⃗1

x⃗i

x⃗j

s⃗2

s⃗n1

.

.

.

s⃗n

.

.

.

Df Rs Rf

xpiq 1, . . . , 0

xpjq
q ´ 1, . . . , 1, 0

q ´ 1, . . . , q ´ 1

fp1q

fp2q

fpmq

.

.

.

fpm1q

fpiq :“ fpxpiq
q

.

.

.

Range of fRange of
ř

k x⃗kDomain of f

f
´

xpiq
¯

.

.

. xpiq
K

x
piq
2

x
piq
1

xpiq :“ px
piq
1 , . . . , x

piq
K

q

§ Because of the input x is digital, the domain of f is over a finite set.

§ In a noise-free channel, the constellation points at the receiver are finite.

§ Consider two inputs xpiq and xpjq that generate two different function’s
output f piq and f pjq:

§ if s⃗i ‰ s⃗j , we can associate the value fpiq to s⃗i, and fpjq to s⃗j .
§ if s⃗i “ s⃗j , we cannot make the correct association, unless we enforce a splitting of
s⃗i and s⃗j by a proper encoding.
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An Old Idea? The Hydraulic Telegraph, 4-th Century BC

§ Attributed to Aeneas Tacticus, 4th century BC.

§ Used to send messages between Sicily and Carthage (modern
Tunisia) [23].

§ The water levels were associated with (possibly complex) messages.

§ The water levels do not mean anything by themselves, it is their
association/mapping to messages that is meaningful.

[23] Polybius: The Histories. Loeb Classical Library (in Ancient Greek, English, and Latin). Translated by Paton,

W.R. Chicago; University of Chicag, 2012
27



Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp
Issues with Digital Modulations
Key Idea of ChannelComp
Constellation Design
Numerical Results

Conclusions

27



ChannelComp’s Problem Formulation

0

0

x1

x2

xK

.

.

.

fpx1, . . . , xKq

T t¨u f̂px1, x2, . . . , xKq

x1

... y⃗n

z⃗

ÿ

x⃗k...

x⃗1

...

x⃗K

h1

hK

Qp¨q

xK Qp¨q

x̃1

...
...

...

E p¨q

x̃K E p¨q

Goal: Find the constellation encoder E p¨q and the mapping T t¨u to do the
computation for a given quantisation Qp¨q:

T ˚, E p¨q
˚

“ argmin
E

ř

x1,...,xKPDf

ˇ

ˇ

ˇ
fpx1, . . . , xKq ´ T

␣

y⃗n
(

loomoon

f̂

ˇ

ˇ

ˇ

2
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Constellation Design

0, . . . , 0xp1q
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x⃗1

x⃗i

x⃗j

s⃗2

s⃗n1
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Df Rs Rf
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xpjq
q ´ 1, . . . , 1, 0

q ´ 1, . . . , q ´ 1

fp1q

fp2q

fpmq

.

.

.

fpm1q

fpiq :“ fpxpiq
q

.

.

.

Range of fRange of
ř

k x⃗kDomain of f

To find the encoder, we pose the following feasibility optimization

P1 “ find
x

x

s.t. f piq
‰ f pjq

ñ s⃗i ‰ s⃗j , @pi, jq P rM s
2, (6a)

}x}
2
2 ď P. (6b)
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ChannelComp 1: Any Modulation

Proposition (Necessary condition [24])

Let the K multivariate function fpx1, x2, . . . , xKq with domain Df , where xk P Df for k P rKs

be a symmetric function, i.e.,

fpx1, . . . , xKq “ fpπpx1q, . . . , πpxKqq, (7)

for all possible permutations by π : t1, . . . , Ku ÞÑ t1, . . . , Ku. Let each node use the identical

modulation E . Then, function f can be computed by the constellation diagram of
řK
k“1 E pxkq.

[24] S. Razavikia et al., “ChannelComp: A general method for computation by communications,” IEEE

Transactions on Communications, 2023. doi: 10.1109/TCOMM.2023.3324999

Proposition ([24])

Let ϵ´1 ě max
pi,jqPrMs2

|fpiq ´ fpjq|2. Then, Problem P2 is feasible, and thus there exists a

modulation vector x satisfying the constraints.

30
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ChannelComp 2: q-QAM by the Ring of Integers (SumComp)

Ep¨q X

Z

Zrρs

G

Gρp¨q

Λq

q1

Zq

q2

1

ρ

Theorem (MAE Analysis [25])

Under the same conditions given in [25, Theorem 1], except for f :“ ψ
´

řK
k“1 φkpskq

¯

, we have

MAEpf̂q :“ E
␣

|f ´ f̂ |
(

,ď wψp

b

q21e1 ` q22e2q, (8)

where wψ signifies the modulus of continuity of ψ (an extension of Lipschitz continuity).

[25] S. Razavikia et al., SumComp: Coding for digital over-the-air computation via the ring of integers, 2023. arXiv:

2310.20504 [cs.IT]
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ChannelComp 3: SumComp for Blind Federated Learning

g1pmq “ ∇L1pwpmqqs1 “ g1pmq

wpmq“wpm ´ 1q´ ηgpm ´ 1q
Local Dataset D1

gKpmq “ ∇LKpwpmqqsK “ gKpmq

wpmq “wpm ´ 1q́ ηgpm ´ 1q
Local Dataset DK

...
...gpmq “

ř

k gkpmq{K

wpm ` 1q “ wpmq ´ ηgpmq

Proposition (Number of Antennas [26])

Let g P CN be the global gradient averaged by the ES, and ĝ be the estimated gradient of g. Then, with probability no

less than 1 ´ δ, the error of the estimated gradient, ĝ, as well as the MSE of ĝ, are bounded by scalar σ2fad, i.e.,

}g̃ ´ ĝ} ď ϵfad, Er}g ´ ĝ}
2

s ď σ
2
fad ` σ

2
q, (9)

where σ2fad :“ 16
Nγ2maxq

Nrc
2
min

pπ ` 2 ln p6Kq2q, if the number of antennas, Nr , is greater than

16γ2maxNq

ϵ2
fad

c2
min

ln
´

6K
δ

¯

, where γmax :“ maxn γn, cmin :“ minn cn, and q is the order of modulations.

[26] S. Razavikia et al., Blind federated learning via over-the-air q-QAM, 2023. arXiv: 2311.04253 [eess.SP]
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Simulations Setup

§ ChannelComp performance is compared to
§ OFDMA.
§ OAC, which uses analog modulation.

§ Functions tested with K “ 4 nodes:
§ f1 “

ř4
k“1 xk

§ f2 “
ś4
k“1 xk

§ f3 “
ř4
k“1 x

2
k

§ f4 “ maxk xk

for xk P t0, 1, 2, . . . , 7u

§ Input signals transmitted over an AWGN channel.

§ NMSE used to characterize computation error over Ns “ 100 Monte
Carlo trials for different SNRs.
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Performance Comparison
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§ Thanks to constructive overlaps of the reshaped modulation, ChannelComp
outperforms AirComp and OFDMA with more than 10 dB improvement for
the product function.
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Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp

Conclusions
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Conclusions

§ In ML over networks, we will often encounter the problem of
computing functions from distributed units connected by wireess
multiple access network (MAC)

§ Our work is the first attempt to propose general digital modulations for
function computation over the MAC.

§ The proposed ChannelComp properties:
§ Ultra-low-latency
§ General functions computation
§ Any digital modulations
§ Simple communication architecture
§ Integration of both the encoder and modulation
§ Extension of OAC (it works for analog as well)

§ Generalization to MIMO, fading channels, asynchronous, etc.

§ Applications of ChannelComp for, e.g., federated edge learning, or
distributed sensing problems.
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Q&A

Thanks for your attention! Any question?
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