

Communications for Distributed Computations

I Brazilian Signal Processing Forum: cooperating for a connected world

Carlo Fischione

KTH Royal Institute of Technology carlofi@kth.se

June 2024

ML and Wireless: Challenges

- ▶ In wireless networks and devices, it is difficult to make ML training and inference in real time.
- The networks and devices are distributed, and heterogeneous, even using different communication protocols.
- ▶ Inference on a device/access network needs data from other devices and network locations as a collaborative effort.
- A major concern is energy efficiency, bandwidth limitations, privacy, and security.

Many Use-cases of ML in Wireless Networks

- ▶ Smart Cities, Smart Grids, Autonomous Vehicles
- ▶ Personal Health Monitoring, Communication Infrastructure

But ML is Still Conceived for Past Technological Revolutions!

- ML is still conceived for centrally collected data or private powerful networks of processors having clean, easy to access, statistically rich data, without communication delays or bandwidth limitations
- ▶ Traditional ML is challenged by wireless networks
- ▶ Current wireless networks are inefficient for ML services

ML and Wireless Research

- ▶ ML over Wireless Networks is concerned with
 - Distributed model training
 - Distributed inference
- ▶ We can use ML in wireless networks for
 - 1. redesign or adaptation of wireless access protocols to support ML/AI services;
 - 2. ML services over wireless networks;
 - 3. data-driven redesign and management of the network (e.g., in difficult channels, handover predictions, resource allocations).

Do We Need Communication Protocols for ML Computations?

- "The Americans have need of the telephone, but we do not. We have plenty of messenger boys". Sir William Preece, Chief Engineer of the British Post Office, 1876.
- "Cellular phones will absolutely not replace local wire systems". Marty Cooper, the father of the cell phone, 1974

Analog Over-the-Air Computation: OAC

State-of-the-art OAC Federated Learning with Retransmissions Static Retransmissions Fast-fading Retransmissions

Digital Over-the-Air Computation: ChannelComp

- In Federated Learning, the model/gradient sum at the central server can be "automatically computed" by wireless interference.
- The devices transmit simultaneously over the same channels, which leads to a natural sum:

$$\vec{y}(t) = \sum_{k} \vec{x}_{k}(t), \quad t = 1, 2, \dots$$
 (1)

 Potentially, tremendous energy, frequency, privacy, security, and efficiency benefits!

OAC Uses Analog Modulations

The OAC state-of-the-art assumes Amplitude Analog Modulations.

Analog Over-the-Air Computation: OAC State-of-the-art

OAC Federated Learning with Retransmissions Static Retransmissions Fast-fading Retransmissions

Digital Over-the-Air Computation: ChannelComp

VETENSKA

History of OAC

 B. Nazer et al., "Reliable computation over multiple-access channels," in Allerton Conf. on Commun., Control, and Computing, 2005

[2] M. Goldenbaum et al., "On function computation via wireless sensor multiple-access channels," in IEEE Wire. Commun. and Net. Conf., 2009

[3] G. Zhu et al., "Broadband analog aggregation for low-latency federated edge learning," IEEE Trans. on Wire.Commun., 2019

 [4] G. Zhu et al., "One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis," *IEEE Wireless Commun.*, 2020

[5] A. Şahin *et al.*, "Distributed learning over a wireless network with FSK-based majority vote," in *IEEE CommNet*, 2021

State-of-the-art (1/2)

Topic	Ref.	Summary				
Broadband	[3]	FL using AirComp over broadband channels				
Analog		with truncated channel inversion to handle				
Aggregation		fading.				
	[6]	Sparsification of gradients combined with error				
Gradient		accumulation for compression.				
Sparsification	[7]	Extension of [6] to consider fading channel				
		uses truncated channel inversion.				
	[8]	Performance comparison of [7] scheme, se-				
		quential digital transmission, and BAA.				
	[9]	Utilization of temporal structures in the gra-				
		dient updates to form a Bayesian prior in the				
		gradient estimation step.				
Federated	[10]	Trains by communicating model outputs in-				
Distillation		stead of model parameters. Over-the-air com-				
		putation is used to combine model output vec-				
		tors for each class.				

^[6] M. M. Amiri et al., "Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air," *IEEE Transactions on Signal Processing*, vol. 68, pp. 2155–2169, Mar. 2020

^[7] M. M. Amiri et al., "Over-the-Air Machine Learning at the Wireless Edge," in SPAWC, IEEE, Aug. 2019, pp. 1-5

^[8] M. M. Amiri et al., "Federated Learning over Wireless Fading Channels," IEEE Trans. on Wire. Commun., vol. 19, no. 5, pp. 3546-3557, Feb. 2020

^[9] D. Fan et al., "Temporal-Structure-Assisted Gradient Aggregation for Over-the-Air Federated Edge Learning," arXiv, vol. abs/2103.02270, Mar. 2021

^[10] J.-H. Ahn et al., "Wireless Federated Distillation for Distributed Edge Learning with Heterogeneous 9 Data," in PIMRC, IEEE, Jul. 2019, pp. 1-6

State-of-the-art (2/2)

Topic	Ref.	Summary
Training with	[11]	Proposal of gradient-based multiple-access
Noisy Gradients		scheme that does not cancel the fading effect
		but operates directly with noisy gradients.
	[12]	Convergence rate analysis for gradient-based
		multiple-access.
Data Sharing	[13]	DSGD training using combined gradients. In-
		troduces data redundancy to combat non-IID.
		data.
Analog Federated	[14]	Second-order training algorithm with CoMAC
ADMM		communication.

▶ For a detailed exposition of the literature, see [15].

^[11] T. Sery et al., "A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels," in Allerton, IEEE, Dec. 2019, pp. 303-307

^[12] T. Sery et al., "On Analog Gradient Descent Learning over Multiple Access Fading Channels," IEEE Trans. on Sig. Proc., vol. 68, pp. 2897-2911, Apr. 2020

^[13] Y. Sun et al., "Energy-Aware Analog Aggregation for Federated Learning with Redundant Data," in ICC, IEEE, Jul. 2020, pp. 1-7

^[14] A. Elgabli et al., "Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated Learning," IEEE Trans. on Commun., May 2021

^[15] H. Hellström et al., "Wireless for machine learning: A survey," Foundations and Trends in Sig. Proc., 10 vol. 15, no. 4, pp. 290-399, 2022

Analog Over-the-Air Computation: OAC

State-of-the-art OAC Federated Learning with Retransmissions Static Retransmissions Fast-fading Retransmissions

Digital Over-the-Air Computation: ChannelComp

OAC Introduces Estimation Errors

- OAC deliberately generates interference over the wireless channel
 - ▶ The desired function is estimated using the superimposed received signal
 - \blacktriangleright The individual model parameter vectors \mathbf{w}_k are never recreated at the receiver
- Due to the analog modulations, channel attenuation and additive noise, there are inevitable estimation errors

Estimation Errors

 With heterogeneous fading and additive noise, the received signal is a noisy and distorted sum of the transmitted messages

•
$$y[t] = \sum_{k=1}^{K} \frac{h_k[t]b_k[t]\mathbf{w}_k}{\sqrt{\eta}} + \frac{z[t]}{\sqrt{\eta}}$$

• Given independent Gaussian sources and global channel knowledge, the minimum mean-squared error estimator (MMSE) is biased [16]

$$\eta^* = \min_k \left(\frac{\sigma_z^2 + \sum_{i=1}^k P_{\max}|h_i|^2}{\sum_{i=1}^k P_{\max}|h_i|} \right)^2$$

$$b_k^* = \frac{h_k[t]^H}{|h_k[t]|^2} \min\left(P_{\max}, \frac{\eta^*}{|h_k|^2} \right)$$

- Even with optimal estimation, significant estimation errors, due to bias, remain
- How do we reduce them?

^[16] X. Cao et al., "Optimized power control for over-the-air computation in fading channels," IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp. 7498-7513, 2020

Analog Over-the-Air Computation: OAC

State-of-the-art OAC Federated Learning with Retransmissions Static Retransmissions Fast-fading Retransmissions

Digital Over-the-Air Computation: ChannelComp

- \blacktriangleright With M-1 retransmissions over block-fading static channels, the received signal becomes
 - $\blacktriangleright y[t] = \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{k=1}^{K} \frac{h_k[t] b_k[t] \mathbf{w}_k}{\sqrt{\eta}} + \frac{z[t,m]}{\sqrt{\eta}} \right)$
- ▶ Signal-part interferes constructively, while ergodic noise leads to destructive interference
- Federated Learning algorithm with retransmissions:
 - 1. Random model initialization
 - 2. Broadcast model in downlink
 - 3. Local training at User Devices
 - 4. for m = 1 : M
 - 4.1 Uplink OAC aggregation of model updates
 - 5. Compute mean at Access Point
 - 6. Repeat 2-5 until convergence

 With standard tools from convex optimization theory, we can prove upper bounds on over-the-air federated learning convergence with retransmissions [17]

• Let

$$c_2 := 1 - 2\beta \frac{\mu L}{\mu + L},$$
(2)
and

$$c_3 := \beta^2 ||\sigma||^2 K \sum_{k=1}^{N} p_k |h_k|^2 + \frac{d\sigma_z^2}{M}.$$
 (3)

Then,

$$\mathbb{E}\left[F(\mathbf{w}_{n})\right] - F(\mathbf{w}^{*}) \leq \frac{L}{2}c_{2}^{n}\mathbb{E}[r_{0}^{2}] + \frac{Lc_{3}}{2\left(\sum_{k=1}^{M}\sqrt{p_{k}}|h_{k}|\right)^{2}\left(1-c_{2}\right)},\tag{4}$$

^[17] H. Hellström et al., "Federated learning over-the-air by retransmissions," IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp. 9143-9156, 2023

- MSE-minimizing power control is dependent on the number of retransmissions, i.e., the devices should be aware of M when selecting their transmission powers
- ▶ MSE reductions are expensive compared to channel codes, but offer a first step toward enabling an estimation-communication tradeoff

- Retransmissions improve post-convergence accuracy
- More expensive in terms of communication

- ▶ Noise-related term falls of at approximately 1/M
- Slight decline in bias-related term

Analog Over-the-Air Computation: OAC

State-of-the-art OAC Federated Learning with Retransmissions Static Retransmissions Fast-fading Retransmissions

Digital Over-the-Air Computation: ChannelComp

Optimal Precoder with Retransmissions over Fast-fading

- OAC function estimation is plagued by bias
- We can exploit the time-diversity of fast fading to reduce the bias
- With tools from Algorithm Analysis, we prove that the optimal causal power control scheme follows a greedy approach [18]

$$b_k[m]^* = \min\left(\sqrt{p_{\max}}, \left(1 - \sum_{i=1}^{m-1} \frac{|h_k[i]|b_k[i]}{M\sqrt{\eta}}\right) \frac{M\sqrt{\eta}}{|h_k[t]|}\right),\tag{5}$$

[18] H. Hellstrom et al., "Unbiased over-the-air computation via retransmissions," in IEEE Global Communications Conference, 2022, pp. 782-787

Numerical Results over Fast-fading Channels

- MSE floor that depends on choice of post-transmission scalar η
- More efficient tradeoff than for static channels

- Without retransmissions (M = 1), estimator bias is inevitable
- Unbiased probability increases toward 100% within finite number of retransmissions

Take-home Message

- The quality of the estimation provided by OAC can be significantly improved by retransmissions.
- Over-the-air computation introduces a bias.
- Power control and retransmissions can help to significantly reduce or eliminate the bias, especially for fast-fading channels

Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp

Issues with Digital Modulations Key Idea of ChannelComp Constellation Design Numerical Results

Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp Issues with Digital Modulations

Key Idea of ChannelComp Constellation Design Numerical Results

OAC Does not Work with Digital Modulations

 OAC with digital modulations seems unfeasible, because the overlapping of digital waveforms returns incomprehensible signals.

Research Gap in OAC and Digital Modulations

Methods Subjects	Analog Modulation		Digital Modulation			
Papers	[2], [3], [19]	[20]	[4]	[5], [21]	[22]	Ours
Spectral Efficiency	 ✓ 	X	1	X	 ✓ 	1
Low Latency	 ✓ 	X	1	X	 ✓ 	1
BPSK and QPSK	X	X	1	X	1	1
QAM 16, 32,	×	X	×	×	×	1
Analog Modulation	1	1	X	X	X	1
Sign Function	X	X	1	1	1	1
Nomographic Functions	1	1	X	×	×	~
General Functions	×	X	X	×	X	1
Ubiquitous implementation	×	×	1	1	1	1

✓: Performance is very good!

✗: It is not studied at all.

^[19] M. Goldenbaum et al., "Robust analog function computation via wireless multiple-access channels," IEEE Trans. on Commun., 2013

^[20] A. Şahin et al., "Distributed learning over a wireless network with FSK-based majority vote," in *IEEE CommNet*, 2021

^[21] A. Şahin, "A demonstration of over-the-air computation for federated edge learning," in IEEE Globecom Workshops, 2022

^[22] A. Şahin et al., "Over-the-air computation over balanced numerals," in IEEE Globecom Workshops, 21 2022

- Create OAC methods that are inherently built for **digital** communications.
- The methods should be able to perform the computation of any function $f(x_1, \ldots, x_K)$ over-the-air, where the inputs belong to different units/nodes.
- ▶ The key idea: rethink how the receiver works!

Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp

Issues with Digital Modulations Key Idea of ChannelComp Constellation Design Numerical Results

Key Idea: a GOOD Example for BPSK Modulation

We can attach mechanically the value of the computation to a received constellation point.

Key Idea: a GOOD Example for QPSK Modulation (1/2)

By assigning specific values to the reshaped constellation points, QPSK modulation enables the computation of the summation function.

Key Idea: A BAD Example for QPSK Modulation (2/2)

The overlaps of the reshaped constellation points of QPSK modulation do NOT allow us to compute the product function.

Key Idea: the General Case of ChannelComp

 $f^{(i)} := f(\mathbf{x}^{(i)})$ $\mathbf{x}^{(i)} := (x_1^{(i)}, \dots, x_K^{(i)})$

- Because of the input x is digital, the domain of f is over a finite set.
- In a noise-free channel, the constellation points at the receiver are finite.
- Consider two inputs $x^{(i)}$ and $x^{(j)}$ that generate two different function's output $f^{(i)}$ and $f^{(j)}$:
 - if s_i ≠ s_j, we can associate the value f⁽ⁱ⁾ to s_i, and f^(j) to s_j.
 if s_i = s_j, we cannot make the correct association, unless we enforce a splitting of
 - \vec{s}_i and \vec{s}_j by a proper encoding.

An Old Idea? The Hydraulic Telegraph, 4-th Century BC

- ▶ Attributed to Aeneas Tacticus, 4th century BC.
- ▶ Used to send messages between Sicily and Carthage (modern Tunisia) [23].
- ▶ The water levels were associated with (possibly complex) messages.
- The water levels do not mean anything by themselves, it is their association/mapping to messages that is meaningful.

 ^[23] Polybius: The Histories. Loeb Classical Library (in Ancient Greek, English, and Latin). Translated by Paton, 27
 W.R. Chicago; University of Chicag, 2012

Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp

Issues with Digital Modulations Key Idea of ChannelComp Constellation Design Numerical Results

ChannelComp's Problem Formulation

Goal: Find the constellation encoder $\mathscr{E}(\cdot)$ and the mapping $\mathcal{T}\{\cdot\}$ to do the computation for a given quantisation $\mathcal{Q}(\cdot)$:

$$\mathcal{T}^*, \mathscr{E}(\cdot)^* = \underset{\mathscr{E}}{\operatorname{argmin}} \sum_{x_1, \dots, x_K \in \mathcal{D}_f} \left| f(x_1, \dots, x_K) - \underbrace{\mathcal{T}\{\vec{y}_n\}}_{\hat{f}} \right|^2$$

Constellation Design

 $\boldsymbol{f}^{(i)} := \boldsymbol{f}(\mathbf{x}^{(i)})$

To find the encoder, we pose the following feasibility optimization

$$\mathcal{P}_{1} = \underset{\mathbf{x}}{\operatorname{find}} \qquad \mathbf{x}$$
s.t.
$$f^{(i)} \neq f^{(j)} \Rightarrow \vec{s}_{i} \neq \vec{s}_{j}, \ \forall (i,j) \in [M]^{2}, \qquad (6a)$$

$$\|\mathbf{x}\|_{2}^{2} \leqslant P. \qquad (6b)$$

ChannelComp 1: Any Modulation

Proposition (Necessary condition [24])

Let the K multivariate function $f(x_1, x_2, \ldots, x_K)$ with domain \mathcal{D}_f , where $x_k \in \mathcal{D}_f$ for $k \in [K]$ be a symmetric function, i.e.,

$$f(x_1, \dots, x_K) = f(\pi(x_1), \dots, \pi(x_K)),$$
(7)

for all possible permutations by $\pi: \{1, \ldots, K\} \mapsto \{1, \ldots, K\}$. Let each node use the identical modulation \mathscr{E} . Then, function f can be computed by the constellation diagram of $\sum_{k=1}^{K} \mathscr{E}(x_k)$.

[24] S. Razavikia et al., "ChannelComp: A general method for computation by communications," IEEE Transactions on Communications, 2023. DOI: 10.1109/TCOMM.2023.3324999

Proposition ([24])

Let $\epsilon^{-1} \ge \max_{(i,j) \in [M]^2} |f^{(i)} - f^{(j)}|^2$. Then, Problem \mathcal{P}_2 is feasible, and thus there exists a modulation vector \mathbf{x} satisfying the constraints.

ChannelComp 2: q-QAM by the Ring of Integers (SumComp)

Theorem (MAE Analysis [25])

Under the same conditions given in [25, Theorem 1], except for $f := \psi \left(\sum_{k=1}^{K} \varphi_k(s_k) \right)$, we have

$$MAE(\hat{f}) := \mathbb{E}\{|f - \hat{f}|\}, \leq w_{\psi}(\sqrt{q_1^2 e_1 + q_2^2 e_2}),$$
(8)

where w_{ψ} signifies the modulus of continuity of ψ (an extension of Lipschitz continuity).

^[25] S. Razavikia et al., SumComp: Coding for digital over-the-air computation via the ring of integers, 2023. arXiv: 2310.20504 [cs.IT]

ChannelComp 3: SumComp for Blind Federated Learning

Proposition (Number of Antennas [26])

Let $\mathbf{g} \in \mathbb{C}^N$ be the global gradient averaged by the ES, and $\hat{\mathbf{g}}$ be the estimated gradient of \mathbf{g} . Then, with probability no less than $1 - \delta$, the error of the estimated gradient, $\hat{\mathbf{g}}$, as well as the MSE of $\hat{\mathbf{g}}$, are bounded by scalar σ_{fad}^2 , i.e.,

$$\|\tilde{\mathbf{g}} - \hat{\mathbf{g}}\| \leq \epsilon_{\text{fad}}, \qquad \mathbb{E}[\|\mathbf{g} - \hat{\mathbf{g}}\|^2] \leq \sigma_{\text{fad}}^2 + \sigma_q^2, \tag{9}$$

where $\sigma_{\text{fad}}^2 := 16 \frac{N \gamma_{\text{max}}^2 q}{N_r c_{\text{min}}^2} (\pi + 2 \ln (6K)^2)$, if the number of antennas, N_r , is greater than $\frac{16 \gamma_{\text{max}}^2 N q}{\epsilon_{\text{fad}}^2 c_{\text{min}}^2} \ln \left(\frac{6K}{\delta}\right)$, where $\gamma_{\text{max}} := \max_n \gamma_n$, $c_{\min} := \min_n c_n$, and q is the order of modulations.

[26] S. Razavikia et al., Blind federated learning via over-the-air q-QAM, 2023. arXiv: 2311.04253 [eess.SP]

Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp

Issues with Digital Modulations Key Idea of ChannelComp Constellation Design Numerical Results

Simulations Setup

- ChannelComp performance is compared to
 - ▶ OFDMA.
 - ▶ OAC, which uses analog modulation.
- Functions tested with K = 4 nodes:

$$f_1 = \sum_{k=1}^{4} x_k \\ f_2 = \prod_{k=1}^{4} x_k \\ f_3 = \sum_{k=1}^{4} x_k^2 \\ f_4 = \max_k x_k$$

for $x_k \in \{0, 1, 2, \dots, 7\}$

- ▶ Input signals transmitted over an AWGN channel.
- ▶ NMSE used to characterize computation error over $N_s = 100$ Monte Carlo trials for different SNRs.

Performance Comparison

Thanks to constructive overlaps of the reshaped modulation, ChannelComp outperforms AirComp and OFDMA with more than 10 dB improvement for the product function.

Analog Over-the-Air Computation: OAC

Digital Over-the-Air Computation: ChannelComp

- In ML over networks, we will often encounter the problem of computing functions from distributed units connected by wireess multiple access network (MAC)
- Our work is *the first attempt* to propose general digital modulations for function computation over the MAC.
- ▶ The proposed ChannelComp properties:
 - Ultra-low-latency
 - General functions computation
 - Any digital modulations
 - Simple communication architecture
 - Integration of both the encoder and modulation
 - Extension of OAC (it works for analog as well)
- ▶ Generalization to MIMO, fading channels, asynchronous, etc.
- Applications of ChannelComp for, e.g., federated edge learning, or distributed sensing problems.

Acknowledgements

This presentation is based on the following papers:

- L. Turchet, C. Fischione, G. Essl, D. Keller, M. Barthet, "Internet of Musical Things: Vision and Challenges", *IEEE Access*, 2018
- H Hellström, J. M. Barros da Silva Jr., M. M. Amiri, M. Chen, V. Fodor, V. Poor, C. Fischione, "Wireless for Machine Learning: A Survey", NOW Foundations and Trends in SP, 2022.
- S. Razavikia, J. M. Barros da Silva Jr., C. Fischione, "ChannelComp: A General Method for Computation by Communications", *IEEE TCOM*, 2023.
- S. Razavikia, J. M. Barros da Silva Jr., C. Fischione, "SumComp: Coding for Digital Over-the-Air Computation via the Ring of Integers", Submitted to *IEEE TCOM*, 2023.
- S. Razavikia, J. M. Barros da Silva Jr., C. Fischione, "Blind federated learning via over-the-air q-QAM", Submitted to *IEEE TWC*, 2023.

Thanks for your attention! Any question?

References I

- [1] B. Nazer *et al.*, "Reliable computation over multiple-access channels," in *Allerton Conf. on Commun., Control, and Computing*, 2005.
- [2] M. Goldenbaum *et al.*, "On function computation via wireless sensor multiple-access channels," in *IEEE Wire. Commun. and Net. Conf.*, 2009.
- [3] G. Zhu *et al.*, "Broadband analog aggregation for low-latency federated edge learning," *IEEE Trans. on Wire.Commun.*, 2019.
- [4] G. Zhu et al., "One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis," *IEEE Wireless Commun.*, 2020.
- [5] A. Şahin *et al.*, "Distributed learning over a wireless network with FSK-based majority vote," in *IEEE CommNet*, 2021.
- [6] M. M. Amiri *et al.*, "Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air," *IEEE Transactions on Signal Processing*, vol. 68, pp. 2155–2169, Mar. 2020.
- [7] M. M. Amiri *et al.*, "Over-the-Air Machine Learning at the Wireless Edge," in *SPAWC*, IEEE, Aug. 2019, pp. 1–5.

References II

- [8] M. M. Amiri et al., "Federated Learning over Wireless Fading Channels," *IEEE Trans. on Wire. Commun.*, vol. 19, no. 5, pp. 3546–3557, Feb. 2020.
- D. Fan *et al.*, "Temporal-Structure-Assisted Gradient Aggregation for Over-the-Air Federated Edge Learning," *arXiv*, vol. abs/2103.02270, Mar. 2021.
- [10] J.-H. Ahn *et al.*, "Wireless Federated Distillation for Distributed Edge Learning with Heterogeneous Data," in *PIMRC*, IEEE, Jul. 2019, pp. 1–6.
- [11] T. Sery *et al.*, "A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels," in *Allerton*, IEEE, Dec. 2019, pp. 303–307.
- [12] T. Sery *et al.*, "On Analog Gradient Descent Learning over Multiple Access Fading Channels," *IEEE Trans. on Sig. Proc.*, vol. 68, pp. 2897–2911, Apr. 2020.
- [13] Y. Sun *et al.*, "Energy-Aware Analog Aggregation for Federated Learning with Redundant Data," in *ICC*, IEEE, Jul. 2020, pp. 1–7.

References III

- [14] A. Elgabli et al., "Harnessing Wireless Channels for Scalable and Privacy-Preserving Federated Learning," *IEEE Trans. on Commun.*, May 2021.
- [15] H. Hellström et al., "Wireless for machine learning: A survey," Foundations and Trends® in Sig. Proc., vol. 15, no. 4, pp. 290–399, 2022.
- [16] X. Cao et al., "Optimized power control for over-the-air computation in fading channels," *IEEE Transactions on Wireless Communications*, vol. 19, no. 11, pp. 7498–7513, 2020.
- [17] H. Hellström *et al.*, "Federated learning over-the-air by retransmissions," *IEEE Transactions on Wireless Communications*, vol. 22, no. 12, pp. 9143–9156, 2023.
- [18] H. Hellstrom et al., "Unbiased over-the-air computation via retransmissions," in *IEEE Global Communications Conference*, 2022, pp. 782–787.
- [19] G. Zhu et al., "Over-the-air computing for wireless data aggregation in massive IoT," *IEEE Wireless Commun.*, 2021.

References IV

- [20] M. Goldenbaum *et al.*, "Robust analog function computation via wireless multiple-access channels," *IEEE Trans. on Commun.*, 2013.
- [21] A. Şahin, "A demonstration of over-the-air computation for federated edge learning," in *IEEE Globecom Workshops*, 2022.
- [22] A. Şahin et al., "Over-the-air computation over balanced numerals," in *IEEE Globecom Workshops*, 2022.
- [23] Polybius: The Histories. Loeb Classical Library (in Ancient Greek, English, and Latin). Translated by Paton, W.R. Chicago; University of Chicag, 2012.
- [24] S. Razavikia et al., "ChannelComp: A general method for computation by communications," *IEEE Transactions on Communications*, 2023. DOI: 10.1109/TCOMM.2023.3324999.
- [25] S. Razavikia et al., SumComp: Coding for digital over-the-air computation via the ring of integers, 2023. arXiv: 2310.20504 [cs.IT].
- [26] S. Razavikia *et al.*, *Blind federated learning via over-the-air q-QAM*, 2023. arXiv: 2311.04253 [eess.SP].